Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Controlling the selectivity in electrochemical CO2 reduction is an unsolved challenge. While tin (Sn) has emerged as a promising non‐precious catalyst for CO2 electroreduction, most Sn‐based catalysts produce formate as the major product, which is less desirable than CO in terms of separation and further use. Tin monoxide (SnO) nanoparticles supported on carbon black were synthesized and assembled and their application in CO2 reduction was studied. Remarkably high selectivity and partial current densities for CO formation were obtained using these SnO nanoparticles compared to other Sn catalysts. The high activity is attributed to the ultra‐small size of the nanoparticles (2.6 nm), while the high selectivity is attributed to a local pH effect arising from the dense packing of nanoparticles in the conductive carbon black matrix.
Harm-Anton Klok, Tanja Thomsen
Ardemis Anoush Boghossian, Giulia Tagliabue, Sayyed Hashem Sajjadi, Alessandra Antonucci, Shang-Jung Wu, Theodoros Tsoulos, Amirmostafa Amirjani