New Approach to Identifying Critical Initial Conditions for Extreme Flood Simulations in a Semicontinuous Simulation Framework
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Publications associées à New Approach to Identifying Critical Initial Conditions for Extreme Flood Simulations in a Semicontinuous Simulation Framework | EPFL Graph Search
This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
Spectral algorithms are some of the main tools in optimization and inference problems on graphs. Typically, the graph is encoded as a matrix and eigenvectors and eigenvalues of the matrix are then used to solve the given graph problem. Spectral algorithms ...
In this thesis we will present and analyze randomized algorithms for numerical linear algebra problems. An important theme in this thesis is randomized low-rank approximation. In particular, we will study randomized low-rank approximation of matrix functio ...
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically ...
The aircraft assembly system is highly complex involving different stakeholders from multiple domains. The design of such a system requires comprehensive consideration of various industrial scenarios aiming to optimize key performance indicators. Tradition ...
The increasing complexity of transformer models in artificial intelligence expands their computational costs, memory usage, and energy consumption. Hardware acceleration tackles the ensuing challenges by designing processors and accelerators tailored for t ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
Dynamic aperture is an important concept for the study of non-linear beam dynamics in circular accelerators. It describes the extent of the phase-space region where a particle's motion remains bounded over a given number of turns. Understanding the feature ...
Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint diagonalization (RJD) for performing t ...