Publication

Capillary particle assembly (CAPA) for plasmonic devices

Elmira Shahrabi
2014
Projet étudiant
Résumé

Signicant progress has been made to synthesis colloidal particles capable of controlling shape , dimensions and structures. These nanoparticles placement and integration on sur- faces is the main challenges of engineering approaches. Here, we investigate the comple- mentary methods to assemble nanoparticles in two and three dimensional substrate with dierent shape, size and orientation.using hydrophobic substrate to trap and organise par- ticles inside the trenches by capillary forces. we demonstrate that temperature, wetting properties and substrate geometry can be control to achieve high yield assembly with abil- ity to control the arbitrary orientation of particles(nano rods). substrate temperature factor can induce the local phase transition which conne the nanoparticles at three phase contact line required for high yield assembly. wetting properties were determined by silanization of substrate and adjusting surfactant con- centration.Sodium dodecylbenzenesulfonate( SDBS) and cetyltrimethyl ammonium bromide (CTAB) surfactant critical micelle concentration were measured and tuned respectively to stabilise nanospheres and nano rods colloidal solu- tion. substrate template were modied for nano rods to achieve accurate angle orientation by etching assessment and design fabrication (funnel prole with HSQ wall). etching pa- rameters were modied to get accurate nanoscale prole with respect to the design for both silicon and silicon oxide substrate. Eect of substrate orientation and size on the assembly yield were characterised. substrate geometry eect on angular distribution were measured as well.high yield and accurate connement were achieved on the funnel prole templates.the feasibility and reproducibility of this method is demonstrated by assembling nano particles into large area, non close packed arrays. furthermore nanoparticles that are deterministically assembled have the potential to function as nano-plasmonic antennas de- vices. micro uidic chip were fabricated to use in the assembly site to overcome volume limitation in the assembly.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (31)
Self-assembly of nanoparticles
Nanoparticles are classified as having at least one of three dimensions be in the range of 1-100 nm. The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy.
Nanoparticule
Une nanoparticule est selon la norme ISO TS/27687 un nano-objet dont les trois dimensions sont à l'échelle nanométrique, c'est-à-dire une particule dont le diamètre nominal est inférieur à environ. D'autres définitions évoquent un assemblage d'atomes dont au moins une des dimensions se situe à l'échelle nanométrique (ce qui correspond au « nano-objet » tel que défini par la norme ISO précitée) ou insistent sur leurs propriétés nouvelles (dues au confinement quantique et à leur surface spécifique) qui n'apparaissent que pour des tailles de moins d'une centaine de nanomètres.
Auto-assemblage
L’auto-assemblage, parfois rapproché de l'auto-organisation, désigne les procédés par lesquels un système désorganisé de composants élémentaires s'assemble et s'organise de façon spontanée et autonome, à la suite d'interactions spécifiques et locales entre ces composants. On parle d'auto-assemblage moléculaire lorsque les composants en question sont des molécules, mais l'auto-assemblage s'observe à différentes échelles, des molécules à la formation du système solaire et des galaxies en passant par l'échelle nanométrique.
Afficher plus
Publications associées (49)

Optical manipulation of plasmonic nanoparticles: Applications in surface chemistry and nano-optics

Jeonghyeon Kim

Optical tweezers are devices that can manipulate nano- and microparticles using a laser. The principle of optical tweezers is to apply a force to an object using the momentum of light. This force is very small, but it is sufficient to move things in the mi ...
EPFL2023

Trap-and-Track for Characterizing Surfactants at Interfaces

Olivier Martin, Jeonghyeon Kim

Understanding the behavior of surfactants at interfaces is crucial for many applications in materials science and chemistry. Optical tweezers combined with trajectory analysis can become a powerful tool for investigating surfactant characteristics. In this ...
2023

Precise Capillary‐Assisted Nanoparticle Assembly in Reusable Templates

Jürgen Brugger, Olivier Martin, Giovanni Boero, Hsiang-Chu Wang, Ana Conde Rubio, Henry Shao-Chi Yu

Capillary-assisted particle assembly (CAPA) in predefined topographical templates is a scalable method for the precise positioning of nanoscale objects on various surfaces. High-resolution CAPA templates are typically fabricated by expensive electron-beam ...
2022
Afficher plus
MOOCs associés (8)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.