Publication

Detecting overlapping spatial clusters of high sugar-sweetened beverage intake and high body mass index in a general population: a cross-sectional study

Résumé

Background: Evidence suggests that sugar-sweetened beverage (SSB) intake frequency is positively associated with the risk of obesity and diabetes. We aimed to identify populations and areas in high need for interventions to reduce SSB consumption using a fine scale geographical approach. Methods: Geo-referenced data from the population-based Bus Santé study (adults, n=15,767), state of Geneva, Switzerland) were used. SSB intake frequency was estimated using a validated food frequency questionnaire. We implemented spatial statistics to investigate the geographic dependence of SSB intake frequency and body mass index (BMI). Results: SSB intake frequency was not randomly distributed across the state. We identified clear clusters of high and low SSB intake frequency values. One eighth of the population was within clusters of high SSB intake frequency. We also identified clusters of BMI and found that clusters of SSB intake frequency and BMI overlapped in specific areas. One tenth of the population was within high SSB intake frequency and high BMI clusters. These clusters persisted after adjustment for neighborhood-level median income. Conclusion: A fine-scale spatial approach allows identifying specific areas presenting higher SSB consumption and, for some areas, higher SSB consumption with higher BMI. The use of this information to guide interventions such as prevention campaigns could pave the way for precision public health.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.