Model-based reinforcement learning and navigation in animals and machines
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In multi-agent reinforcement learning, multiple agents learn simultaneously while interacting with a common environment and each other. Since the agents adapt their policies during learning, not only the behavior of a single agent becomes non-stationary, b ...
Explainable Artificial Intelligence (XAI) plays a crucial role in enabling human understanding and trust in deep learning systems, often defined as determining which features are most important to a model's prediction. As models get larger, more ubiquitous ...
This article reviews significant advances in networked signal and information processing (SIP), which have enabled in the last 25 years extending decision making and inference, optimization, control, and learning to the increasingly ubiquitous environments ...
Understanding user’s perception of service variability is essential to discern their overall perception of any type of (transport) service. We study the perception of waiting time variability for ride-hailing services. We carried out a stated preference su ...
This paper considers the problem of resilient distributed optimization and stochastic learning in a server-based architecture. The system comprises a server and multiple agents, where each agent has its own local cost function. The agents collaborate with ...
Limited availability of representative time-to-failure (TTF) trajectories either limits the performance of deep learning (DL)-based approaches on remaining useful life (RUL) prediction in practice or even precludes their application. Generating synthetic d ...
Model-free Reinforcement Learning (RL) generally suffers from poor sample complexity, mostly due to the need to exhaustively explore the state-action space to find well-performing policies. On the other hand, we postulate that expert knowledge of the syste ...
Deep learning models for learning analytics have become increasingly popular over the last few years; however, these approaches are still not widely adopted in real-world settings, likely due to a lack of trust and transparency. In this paper, we tackle th ...
In the context of automatic visual inspection of infrastructures by drones, Deep Learning (DL) models are used to automatically process images for fault diagnostics. While explainable Artificial Intelligence (AI) algorithms can provide explanations to asse ...
Motivated by alternating game-play in two-player games, we study an altenating variant of the Online Linear Optimization (OLO). In alternating OLO, a learner at each round t ∈[n] selects a vector xt and then an adversary selects a cost-vector ct ∈[−1,1]n. ...