Adjoint sensitivity of global cloud droplet number to aerosol and dynamical parameters
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Understanding how multiphase processes affect the iron-containing aerosol cycle is key to predicting ocean biogeochemistry changes and hence the feedback effects on climate. For this work, the EC-Earth Earth system model in its climate-chemistry configurat ...
The Arctic warms nearly four times faster than the global average, and aerosols play an increasingly important role in Arctic climate change. In the Arctic, sea salt is a major aerosol component in terms of mass concentration during winter and spring. Howe ...
Accurately capturing cloud condensation nuclei (CCN) concentrations is key to understanding the aerosol-cloud interactions that continue to feature the highest uncertainty amongst numerous climate forcings. In situ CCN observations are sparse, and most non ...
Even though the Arctic is remote, aerosol properties observed there are strongly influenced by anthropogenic emissions from outside the Arctic. This is particularly true for the so-called Arctic haze season (January through April). In summer (June through ...
Aerosol forcing uncertainty represents the largest climate forcing uncertainty overall. Its magnitude has remained virtually undiminished over the past 20 years despite considerable advances in understanding most of the key contributing elements. Recent wo ...
Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their ...
The southeastern Atlantic (SEA) and its associated cloud deck, off the west coast of central Africa, is an area where aerosol–cloud interactions can have a strong radiative impact. Seasonally, extensive biomass burning (BB) aerosol plumes from southern Afr ...
The Twomey effect describes the radiative forcing associated with a change in cloud albedo due to an increase in anthropogenic aerosol emissions. It is driven by the perturbation in cloud droplet number concentration (Delta N-d, (ant)) in liquid-water clou ...
Here we analyze regional-scale data collected on board the NOAA WP-3D aircraft during the 2013 Southeast Nexus (SENEX) campaign to study the aerosol-cloud droplet link and quantify the sensitivity of droplet number to aerosol number, chemical composition, ...
Uncertainty in radiative forcing caused by aerosol–cloud interactions is about twice as large as for CO2 and remains the least well understood anthropogenic contribution to climate change. A major cause of uncertainty is the poorly quantified state of aero ...