Prediction of patient-reported physical activity scores from wearable accelerometer data: a feasibility study
Publications associées (38)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Boosting is a general method for training an ensemble of classifiers with a view to improving performance relative to that of a single classifier. While the original AdaBoost algorithm has been defined for classification tasks, the current work examines it ...
Ensemble algorithms can improve the performance of a given learning algorithm through the combination of multiple base classifiers into an ensemble. In this paper, the idea of using an adaptive policy for training and combining the base classifiers is put ...
Ensemble algorithms can improve the performance of a given learning algorithm through the combination of multiple base classifiers into an ensemble. In this paper, the idea of using an adaptive policy for training and combining the base classifiers is put ...
Boosting is a general method for training an ensemble of classifiers with a view to improving performance relative to that of a single classifier. While the original AdaBoost algorithm has been defined for classification tasks, the current work examines it ...
Ensemble algorithms are general methods for improving the performance of a given learning algorithm. This is achieved by the combination of multiple base classifiers into an ensemble. In this paper, the idea of using an adaptive policy for training and com ...
We present an improved bound on the difference between training and test errors for voting classifiers. This improved averaging bound provides a theoretical justification for popular averaging techniques such as Bayesian classification, Maximum Entropy dis ...
In this paper we investigate benefits of classifier combination for a multimodal system for personal identity verification. The system uses frontal face images and speech. We show that a sophisticated fusion strategy enables the system to outperform its fa ...
In this paper we investigate benefits of classifier combination for a multimodal system for personal identity verification. The system uses frontal face images and speech. We show that a sophisticated fusion strategy enables the system to outperform its fa ...