Publication

Phonetic aware techniques for Speaker Verification

Subhadeep Dey
2018
Thèse EPFL
Résumé

The goal of this thesis is to improve current state-of-the-art techniques in speaker verification (SV), typically based on “identity-vectors” (i-vectors) and deep neural network (DNN), by exploiting diverse (phonetic) information extracted using various techniques such as automatic speech recognition (ASR). Different speakers span different subspaces within a universal acoustic space, usually modelled by “universal background model”. The speaker-specific subspace depends on the speaker’s voice characteristics, but also on the verbalised text of a speaker. In current state-of-the-art SV systems, i-vectors are extracted by applying a factor analysis technique to obtain low dimensional speaker-specific representation. Furthermore, DNN output is also employed in a conventional i-vector framework to model phonetic information embedded in the speech signal. This thesis proposes various techniques to exploit phonetic knowledge of speech to further enrich speaker characteristics. More specifically, the techniques proposed in this thesis are applied to various SV tasks, namely, text-independent and text-dependent SV. For text-independent SV task, several ASR systems are developed and applied to compute phonetic posterior probabilities, subsequently exploited to enhance the speaker-specific information included in i-vectors. These approaches are then extended for text-dependent SV task, exploiting temporal information in a principled way, i.e., by using dynamic time warping applied on speaker informative vectors. Finally, as opposed to train DNN with phonetic information, DNN is trained in an end-to-end fashion to directly discriminate speakers. The baseline end-to-end SV approach consists of mapping a variable length speech segment to a fixed dimensional speaker vector by estimating the mean of hidden representations in DNN structure. We improve upon this technique by computing a distance function between two utterances which takes into account common phonetic units. The whole network is optimized by employing a triplet-loss objective function. The proposed approaches are evaluated on commonly used datasets such as NIST SRE 2010 and RSR2015. Significant improvements are observed over the baseline systems on both the text-dependent and text-independent SV tasks by applying phonetic knowledge.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (46)
Apprentissage profond
L'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Reconnaissance automatique de la parole
vignette|droite|upright=1.4|La reconnaissance vocale est habituellement traitée dans le middleware ; les résultats sont transmis aux applications utilisatrices. La reconnaissance automatique de la parole (souvent improprement appelée reconnaissance vocale) est une technique informatique qui permet d'analyser la voix humaine captée au moyen d'un microphone pour la transcrire sous la forme d'un texte exploitable par une machine.
Phonétique
La phonétique est une branche de la linguistique qui étudie les phones (les sons) en tant que plus petits segments de la parole, du point de vue physique, physiologique, neurophysiologique et neuropsychologique, c’est-à-dire de leur production, transmission, audition et évolution dans le processus de communication humaine par la langue, en utilisant des moyens spécifiques pour leur description, classification et transcription. Certains auteurs incluent dans l’objet de la phonétique les traits suprasegmentaux de la parole (accent, intonation, etc.
Afficher plus
Publications associées (140)

Novel Methods For Detection And Analysis Of Atypical Aspects In Speech

Julian David Fritsch

Atypical aspects in speech concern speech that deviates from what is commonly considered normal or healthy. In this thesis, we propose novel methods for detection and analysis of these aspects, e.g. to monitor the temporary state of a speaker, diseases tha ...
EPFL2023

Sparse Autoencoders for Speech Modeling and Recognition

Selen Hande Kabil

Speech recognition-based applications upon the advancements in artificial intelligence play an essential role to transform most aspects of modern life. However, speech recognition in real-life conditions (e.g., in the presence of overlapping speech, varyin ...
EPFL2023

On matching data and model in LF-MMI-based dysarthric speech recognition

Enno Hermann

In light of steady progress in machine learning, automatic speech recognition (ASR) is entering more and more areas of our daily life, but people with dysarthria and other speech pathologies are left behind. Their voices are underrepresented in the trainin ...
EPFL2023
Afficher plus
MOOCs associés (26)
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.