Publication

Improving Throughput, Latency and Privacy with Hybrid Networks and Multipath Routing

Résumé

Over the last few years, residential and enterprise networking have faced several challenges due to the increasing demand of users for high-throughput connectivity. As a result, efforts are being made to improve coverage, throughput, and robustness. Several solutions have been recently proposed. The first solution is to use mesh networking; it is gaining momentum, as it effectively improves performance, but at the cost of an increased complexity compared to the infrastructure mode, as several paths can now be employed with potentially several hops. The second solution is to exploit the different technologies that are available, wired (e.g., power-line communication (PLC) or Ethernet) and wireless (e.g., WiFi or cellular). Networks with various technologies are referred to as hybrid networks. When the technologies do not interfere with each other, it is possible to aggregate their capacity, thus enabling immediate throughput improvements; by increasing the number of possible paths that a packet can take, hybrid networks also increase complexity. The third solution is to use multipath routing, which can improve performance significantly. But again, this comes at the cost of an increased complexity. In this dissertation, we study the effect of these solutions in terms of throughput and coverage, latency, and privacy. We focus, in particular, on hybrid networks with shared-medium and orthogonal technologies, where two links that use the same technology are subject to interference (shared-medium), but not two links that use two distinct technologies (orthogonal). First, we study the effect of these solutions on throughput and coverage. We show that, in hybrid mesh networks, the optimal number of paths achieving maximal throughput with multipath routing is tightly linked with the number of technologies. This result makes it possible to develop an efficient and practical multipath routing protocol that yields the maximal throughput. Next, we introduce two novel algorithms for optimizing throughput: A distributed multipath congestion controller that, when each flow uses one multipath fixed in advance, provably achieves optimal throughput and an algorithm based on the multi-armed-bandit framework that finds the best multipath and converges to the best achievable throughput. We implement these algorithms in a real testbed with PLC and two orthogonal WiFi channels. Their experimental evaluation shows that using technologies with distinct physical layers, such as PLC and WiFi, improves spatial diversity compared to using multi-channel WiFi and brings further improvements of throughput and coverage. Then, we investigate latency in hybrid networks. We study analytically how the variance of a time-varying service rate affects queueing delays. We also study latency when multipath routing is used, i.e., when traffic is split between two technologies. We show that finding the optimal splitting scheme is difficult, as it depends on the rate at which packets arrive, and that the best static scheme, where the splitting probability remains the same for all arrival rates, can be significantly sub-optimal in time-varying networks. Finally, we study how hybrid networks and multipath can improve privacy. We show that they can significantly improve the resistance against traffic analysis attacks, such as website fingerprinting, by enabling the user to split the traffic between two networks.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (42)
Wi-Fi
thumb|Exemple d'application du Wi-Fi : impression sans fil. Le (ou la) Wi-Fi, aussi orthographié wifi, est un ensemble de protocoles de communication sans fil régis par les normes du groupe IEEE 802.11 (ISO/CEI 8802-11). Un réseau Wi-Fi permet de relier par ondes radio plusieurs appareils informatiques (ordinateur, routeur, smartphone, modem Internet) au sein d'un réseau informatique afin de permettre la transmission de données entre eux. Apparues pour la première fois en 1997, les normes IEEE 802.
Measuring network throughput
Throughput of a network can be measured using various tools available on different platforms. This page explains the theory behind what these tools set out to measure and the issues regarding these measurements. Reasons for measuring throughput in networks. People are often concerned about measuring the maximum data throughput in bits per second of a communications link or network access. A typical method of performing a measurement is to transfer a 'large' file from one system to another system and measure the time required to complete the transfer or copy of the file.
Computational complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Afficher plus
Publications associées (97)

A Tutorial-Cum-Survey on Percolation Theory With Applications in Large-Scale Wireless Networks

Ainur Zhaikhan

Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connec ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Beam Selection and Tracking for Amplify-and-Forward Repeaters

Andreas Peter Burg, Adrian Schumacher, Ruben Merz

Mobile network operators constantly have to upgrade their cellular network to satisfy the public's hunger for increasing data capacity. However, regulatory limits regarding allowed electromagnetic field strength on existing cell sites often limit or preven ...
IEEE2022

Cellular Fronthauling for Data Capacity Increase in Underserved Spaces

Adrian Schumacher

The increase in wireless data traffic continues and is a product of several factors. First, new technologies and capabilities enable new use cases for which new products emerge. Then, with the growing user adoption over time, the data traffic is further in ...
EPFL2022
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.