Publication

Explore RdhK based regulatory network of organohalide respiration using a hybrid proteins strategy

Résumé

Reductive dehalogenase (rdh) gene clusters are encoding proteins that enable organohalide respiring bacteria (OHRB) to couple the degradation of halogenated molecules to energy conservation. The transcription of rdh gene clusters is regulated by RdhK regulators belonging to the CRP/FNR-family. RdhK6 (previously called CprK1) in Desulfitobacterium hafniense was shown to activate the transcription of the chlorophenol rdh genes in presence of 3-hydroxy-4-chlorophenylacetate1,2. RdhK effector-binding domain binds to organohalides which triggers protein conformational change and allows the interaction with specific DNA motifs (dehalobox, DB) upstream of rdh gene clusters3,4. The genome of Dehalobacter restrictus PER-K23 encodes 24 rdh gene clusters, suggesting a great OHR potential. Each cluster has a rdhK paralogue in close proximity5. The elucidation of the regulation network represents an indirect way to reveal yet unknown substrates for D. restrictus. However, the challenge resides in the fact that for each new RdhK, there are a large number of potential organohalides and possible DB sequences, resulting in a high amount of combinations to be tested. This project aims to develop a strategy involving RdhK hybrid proteins to screen for DB and organohalides individually. The hybrids are composed by one domain (i.e. DNA- or effector-binding domain) of D. hafniense RdhK6 and the complementary domain from any RdhK of interest. The proof of concept as well as strategy limitations and alternatives will be discussed. References 1. Kim et al. (2012). BMC Microbiol. 12:21. 2. Gábor et al. (2006). J Bacteriol. 188:2604. 3. Joyce et al. (2006). J Biol Chem. 281:28318. 4. Levy et al. (2008). Mol Microbiol. 70:151. 5. Rupakula et al. (2013). Philos Trans R Soc Lond B Biol Sci. 368(20120325):1.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Halocarbure
Les halocarbures, halogénures organiques ou hydrocarbures halogénés sont les composés organiques comportant au moins une liaison covalente entre un atome de carbone et un atome d'halogène, c'est-à-dire de fluor, de chlore, de brome ou d'iode, formant ainsi respectivement les composés organofluorés, organochlorés, organobromés et organo-iodés. Ces composés sont extrêmement rares dans la nature, et sont donc essentiellement synthétiques.
Halogénoalcane
Les halogénoalcanes ou halogénures d'alkyle sont une sous famille des hydrocarbures halogénés ; ce sont les dérivés halogénés des alcanes. Parmi eux, on trouve notamment les CFC (chlorofluorocarbures), les HFC (hydrofluorocarbures) et des chloroalcanes C10-C13 considérés comme cancérigènes (substances dangereuses à éliminer des rejets d’ici 2020 pour la directive cadre sur l'eau). Les halogénoalcanes sont des alcanes dont un ou plusieurs atomes d'hydrogène sont remplacés par des atomes d'halogène.
Chloroforme
Le chloroforme ou trichlorométhane est un composé organochloré de formule brute CHCl3. Fréquemment utilisé comme solvant, le chloroforme tend à être remplacé actuellement par le dichlorométhane, aux propriétés similaires mais moins toxique. Le chloroforme a autrefois été utilisé comme de l’anesthésique dans les blocs opératoires et comme conservateur pour la viande. Eugène Soubeiran (en France), Justus von Liebig (en Allemagne) et Samuel Guthrie (en Amérique) ont découvert en même temps le chloroforme, préparé pour la première fois en 1831.
Afficher plus
Publications associées (32)

From Sequence to Dynamics to Function: Computational Design of Allostery and Ligand Selectivity in G-Protein Coupled Receptors

Mahdi Hijazi

The phenomenon of allostery, a general property in proteins that has been heralded as "the second secret of life" remains elusive to our understanding and even more challenging to incorporate into protein design. One example of allosteric proteins with gre ...
EPFL2024

Towards automating de novo protein design for novel functionalities: controlling protein folds and protein-protein interactions

Zander Harteveld

The sheer size of the protein sequence space is massive: a protein of 100 residues can have 20^100 possible sequence combinations; and knowing that this exceeds the number of atoms in the universe, the chance of randomly discovering a stable new sequence w ...
EPFL2022

Computational design of highly signaling active membrane receptors through de novo solvent-mediated allosteric networks

Jian Wang, Patrick Daniel Barth

Protein catalysis and allostery require the atomic-level orchestration and motion of residues, ligand, solvent and protein effector molecules, but the ability to design protein activity through precise protein-solvent cooperative interactions has not been ...
2021
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.