Publication

Engineering cancer vaccines using stimuli-responsive biomaterials

Li Tang, Yugang Guo, Yu Zhao
2018
Article
Résumé

Cancer vaccines aimed at expanding the pool or increasing the activity of tumor-specific T cells against malignancies is an important immunotherapy modality that has been extensively pursued in the past decades. However, the clinical efficacy of cancer vaccines remains modest in comparison to other immunotherapies, such as checkpoint blockade and adoptive T cell therapy. This unsatisfactory performance is likely due to the suboptimal selection of tumor antigens for vaccine and inefficient delivery platform. Recently, vaccines designed to target cancer neoantigens have shown marked promise in both preclinical and early clinical studies. However, enormous challenges need to be overcome to develop a highly efficient and safe delivery strategy for targeting cancer vaccines to professional antigen-presenting cells and eliciting optimized immune response against cancers. To meet these challenges, biomaterials, particularly biomaterials that are designed to respond to certain environmental stimuli, termed as stimuli-responsive biomaterials, are being actively developed to precisely manipulate the trafficking and release of cancer vaccines in vivo for enhanced therapeutic efficacy and safety. In this mini review, we provide a brief overview of the recent advances in applying stimuli-responsive biomaterials in enhancing non-cellular cancer vaccines while focusing on the chemistry and material design with varied responsiveness. We also discuss the present challenges and opportunities in the field and provide a perspective for future directions.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.