Publication

The Mutual Information in Random Linear Estimation Beyond i.i.d. Matrices

Résumé

There has been definite progress recently in proving the variational single-letter formula given by the heuristic replica method for various estimation problems. In particular, the replica formula for the mutual information in the case of noisy linear estimation with random i.i.d. matrices, a problem with applications ranging from compressed sensing to statistics, has been proven rigorously. In this contribution we go beyond the restrictive i.i.d. matrix assumption and discuss the formula proposed by Takeda, Uda, Kabashima and later by Tulino, Verdu, Caire and Shamai who used the replica method. Using the recently introduced adaptive interpolation method and random matrix theory, we prove this formula for a relevant large sub-class of rotationally invariant matrices.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.