Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper proposed a multi-keyword ciphertext search, based on an improved-quality hierarchical clustering (MCS-IQHC) method. MCS-IQHC is a novel technique, which is tailored to work with encrypted data. It has improved search accuracy and can self-adapt when performing multi-keyword ciphertext searches on privacy-protected sensor network cloud platforms. Document vectors are first generated by combining the term frequency-inverse document frequency (TF-IDF) weight factor and the vector space model (VSM). The improved quality hierarchical clustering (IQHC) algorithm then generates document vectors, document indices, and cluster indices, which are encrypted via the k-nearest neighbor algorithm (KNN). MCS-IQHC then returns the top-k search result. A series of experiments proved that the proposed method had better searching efficiency and accuracy in high-privacy sensor cloud network environments, compared to other state-of-the-art methods.