A high-order discontinuous Galerkin approximation to ordinary differential equations with applications to elastodynamics
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The scope of this thesis is to build a 1D numerical model of a hydraulic powerplant, transform it to simulate the upgrade of the powerplant into a pumped storage system, establish the issues that would emerge from it in the surge tanks and test several sol ...
Nonlinear modeling of coaxial microhelicopters is studied. All equations are derived using a Lagrangian approach and simplified aerodynamics assumptions so that all parameters have a physical meaning; there is no “black box.” The model is constructed with ...
We study the electrical conductivity of hot Abelian plasma containing scalar charge carriers in the leading logarithmic order in coupling constant alpha using the Boltzmann kinetic equation. The leading contribution to the collision integral is due to the ...
In this project we numerically simulate electrophysiological models for cardiac applications by means of Isogeometric Analysis. Specifically, we aim at understanding the advantages of using high order continuous NURBS (Non-UniformRational B-Splines) basis ...
This work concerns a dedicated mixed-signal power system dynamic simulator. The equations that describe the behavior of a power system can be decoupled in a large linear system that is handled by the analog part of the hardware, and a set of differential e ...
A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomize ODE solvers by adding a random forcing term, ...
The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its comp ...
In this paper, we consider the numerical approximation of high order Partial Differential Equations (PDEs) by means of NURBS-based Isogeometric Analysis (IGA) in the framework of the Galerkin method, for which global smooth basis functions with degree of c ...
We consider the numerical solution of second order Partial Differential Equations (PDEs) on lower dimensional manifolds, specifically on surfaces in three dimensional spaces. For the spatial approximation, we consider Isogeometric Analysis which facilitate ...
This paper presents a method to solve the constrained infinite-time linear quadratic regulator (LQR) problem. We use an operator splitting technique, namely the alternating minimization algorithm (AMA), to split the problem into an unconstrained LQR proble ...