Scaling of the superconducting gap with orbital character in FeSe
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
Statistical (machine-learning, ML) models are more and more often used in computational chemistry as a substitute to more expensive ab initio and parametrizable methods. While the ML algorithms are capable of learning physical laws implicitly from data, ad ...
The electronic density of states (DOS) quantifies the distribution of the energy levels that can be occupied by electrons in a quasiparticle picture and is central to modern electronic structure theory. It also underpins the computation and interpretation ...
Smearing techniques are widely used in first-principles calculations of metallic and magnetic materials where they improve the accuracy of Brillouin-zone sampling and lessen the impact of level-crossing instabilities. Smearing introduces a fictitious elect ...
The very concept of high-T-c superconductivity has originated from the discovery of superconductivity in copper oxides by Bednorz and Muller in 1986. Soon after their discovery, cuprates were recognized as undoubtedly complex and radically unconventional s ...
Transition metal oxides represent a class of materials displaying very unusual electronic, structural and magnetic properties. They are extremely interesting, both from a technological and fundamental point of view. The most important characteristic of the ...
The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn5 and other Ce-based heavy fermion materials, depends strongly on the efficiency with which f electrons are delocalized from the rare earth sites and ...
Understanding the physical properties of unconventional superconductors as well as of other correlated materials presents a formidable challenge. Their unusual evolution with doping, frequency, and temperature has frequently led to non-Fermi-liquid (non-FL ...
Over the past decade we have developed Koopmans functionals, a computationally efficient approach for predicting spectral properties with an orbital-density-dependent functional framework. These functionals impose a generalized piecewise linearity conditio ...
Quantum magnetic impurities give rise to a wealth of phenomena attracting tremendous research interest in recent years. On a normal metal, magnetic impurities generate the correlation-driven Kondo effect. On a superconductor, bound states emerge inside the ...