Discover deeper bugs with dynamic symbolic execution and coverage-based fuzz testing
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Fuzzers effectively explore programs to discover bugs. Greybox fuzzers mutate seed inputs and observe their execution. Whenever a seed reaches new behavior (e.g., new code or higher execution frequency), it is stored for further mutation. Greybox fuzzers d ...
Browser APIs are essential to the modern web experience. Due to their large number and complexity, they vastly expand the attack surface of browsers. To detect vulnerabilities in these APIs, fuzzers generate test cases with a large amount of random API inv ...
Coverage-guided greybox fuzzers rely on control-flow coverage feedback to explore a target program and uncover bugs. Compared to control-flow coverage, data-flow coverage offers a more fine-grained approximation of program behavior. Data-flow coverage capt ...
Manual software testing is laborious and prone to human error. Yet, among practitioners, it is the most popular method for quality assurance. Automating the test case generation promises better effectiveness, especially for exposing corner-case bugs. Symbo ...
Mutation-based greybox fuzzing-unquestionably the most widely-used fuzzing technique-relies on a set of non-crashing seed inputs (a corpus) to bootstrap the bug-finding process. When evaluating a fuzzer, common approaches for constructing this corpus inclu ...
Fuzzing is a testing technique to discover unknown vulnerabilities in software. When applying fuzzing to libraries, the core idea of supplying random input remains unchanged, yet it is non-trivial to achieve good code coverage. Libraries cannot run as stan ...
The pursuit of software security and reliability hinges on the identification and elimination of software vulnerabilities, a challenge compounded by the vast and evolving complexity of modern systems. Fuzzing has emerged as an indispensable technique for b ...
Coverage criteria aim at satisfying test requirements and compute metrics values that quantify the adequacy of test suites at revealing defects in programs. Typically, a test requirement is a structural program element, and the coverage metric value repres ...
Fuzzing has emerged as the most broadly used testing technique to discover bugs. Effective fuzzers rely on coverage to prioritize inputs that exercise new program areas. Edge-based code coverage of the Program Under Test (PUT) is the most commonly used cov ...
This dissertation explores techniques that synthesize and generate program fragments and test inputs. The main goal of these techniques is to improve and support automation in program synthesis and test input generation. This is important because performin ...