A Householder-Based Algorithm For Hessenberg-Triangular Reduction
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Based on the spectral divide-and-conquer algorithm by Nakatsukasa and Higham [SIAM J. Sci. Comput., 35(3):A1325{A1349, 2013], we propose a new algorithm for computing all the eigenvalues and eigenvectors of a symmetric banded matrix. For this purpose, we c ...
Appearing frequently in applications, generalized eigenvalue problems represent one of the core problems in numerical linear algebra. The QZ algorithm of Moler and Stewart is the most widely used algorithm for addressing such problems. Despite its importan ...
In this thesis we address the computation of a spectral decomposition for symmetric
banded matrices. In light of dealing with large-scale matrices, where classical dense
linear algebra routines are not applicable, it is essential to design alternative tech ...
Low-rank tensor completion addresses the task of filling in missing entries in multidimensional data. It has proven its versatility in numerous applications, including context aware recommender systems and multivariate function learning. To handle large-sc ...
Many applications in computational science require computing the elements of a function of a large matrix. A commonly used approach is based on the the evaluation of the eigenvalue decomposition, a task that, in general, involves a computing time that scal ...
The QR algorithm is the method of choice for computing all eigenvalues of a dense nonsymmetric matrix A. After an initial reduction to Hessenberg form, a QR iteration can be viewed as chasing a small bulge from the top left to the bottom right corner along ...
Novel memory-efficient Arnoldi algorithms for solving matrix polynomial eigenvalue problems are presented. More specifically, we consider the case of matrix polynomials expressed in the Chebyshev basis, which is often numerically more appropriate than the ...
We consider the solution of large-scale symmetric eigenvalue problems for which it is known that the eigenvectors admit a low-rank tensor approximation. Such problems arise, for example, from the discretization of high-dimensional elliptic PDE eigenvalue p ...
Given a nonsymmetric matrix A, we investigate the effect of perturbations on an invariant subspace of A. The result derived in this paper differs from Stewart's classical result and sometimes yields tighter bounds. Moreover, we provide norm estimates for t ...
Block Krylov subspace methods (KSMs) comprise building blocks in many state-of-the-art solvers for large-scale matrix equations as they arise, for example, from the discretization of partial differential equations. While extended and rational block Krylov ...