ConnexionnismeLe connexionnisme est une approche utilisée en sciences cognitives, neurosciences, psychologie et philosophie de l'esprit. Le connexionnisme modélise les phénomènes mentaux ou comportementaux comme des processus émergents de réseaux d'unités simples interconnectées. Le plus souvent les connexionnistes modélisent ces phénomènes à l'aide de réseaux de neurones. Il s'agit d'une théorie qui a émergé à la fin des années 1980 en tant qu'alternative au computationnalisme (Putnam, Fodor) alors dominant.
LexiqueLe lexique d'une langue est l'ensemble de ses mots (somme des vocabulaires utilisés), ou de façon plus précise en linguistique de ses lemmes. Les mots d'un lexique forment un tout, une sorte de système sémantique, qui évolue donc au fil du temps. Les rapports entre les mots, de forme et surtout de sens, ainsi qu'entre les sens d'un même mot, sont très divers. La taille d'un lexique est très variable et dépend notamment de la diversité des domaines de connaissance ou techniques qu'elle permet d'exprimer.
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
LangageLe langage est la capacité d'exprimer une pensée et de communiquer au moyen d'un système de signes (vocaux, gestuel, graphiques, tactiles, olfactifs, etc.) doté d'une sémantique, et le plus souvent d'une syntaxe — mais ce n'est pas systématique (la cartographie est un exemple de langage non syntaxique). Fruit d'une acquisition, la langue est une des nombreuses manifestations du langage. Les langages sont constitués de signaux correspondant au support physique de l'information.
Régularisation (mathématiques)vignette|Les courbes bleues et vertes correspondent à deux modèles differents, tous les deux étant des solutions possibles du problème consistant à décrire les coordonnées de tous les points rouges. L'application d'une régularisation favorise le modèle moins complexe correspondant à la courbe verte. Dans le domaine des mathématiques et des statistiques, et plus particulièrement dans le domaine de l'apprentissage automatique, la régularisation fait référence à un processus consistant à ajouter de l'information à un problème, s'il est mal posé ou pour éviter le surapprentissage.
Modèle de langageEn traitement automatique des langues, un modèle de langage ou modèle linguistique est un modèle statistique de la distribution de symboles distincts (lettres, phonèmes, mots) dans une langue naturelle. Un modèle de langage peut par exemple prédire le mot suivant dans une séquence de mots. Un modèle de langage n-gramme est un modèle de langage qui modélise des séquences de mots comme un processus de Markov. Il utilise l'hypothèse simplificatrice selon laquelle la probabilité du mot suivant dans une séquence ne dépend que d'une fenêtre de taille fixe de mots précédents.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Reconnaissance de formesthumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.
Traitement de donnéesEn informatique, le terme traitement de données ou traitement électronique des données renvoie à une série de processus qui permettent d'extraire de l'information ou de produire du savoir à partir de données brutes. Ces processus, une fois programmés, sont le plus souvent automatisés à l'aide d'ordinateurs. Si les résultats finaux produits par ces processus sont destinés à des humains, leur présentation est souvent essentielle pour en apprécier la valeur. Cette appréciation est cependant variable selon les personnes.
Data wranglingData wrangling, sometimes referred to as data munging, is the process of transforming and mapping data from one "raw" data form into another format with the intent of making it more appropriate and valuable for a variety of downstream purposes such as analytics. The goal of data wrangling is to assure quality and useful data. Data analysts typically spend the majority of their time in the process of data wrangling compared to the actual analysis of the data.