The conformal bootstrap: Theory, numerical techniques, and applications
Publications associées (81)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We apply recently constructed functional bases to the numerical conformal bootstrap for 1D CFTs. We argue and show that numerical results in this basis converge much faster than the traditional derivative basis. In particular, truncations of the crossing e ...
We study O(n)-symmetric two-dimensional conformal field theories (CFTs) for a continuous range of n below two. These CFTs describe the fixed point behavior of self-avoiding loops. There is a pair of known fixed points connected by an RG flow. When n is equ ...
In arXiv:1909.01269 it was shown that the scaling dimension of the lightest charge n operator in the U (1) model at the Wilson-Fisher fixed point in D = 4 - epsilon can be computed semiclassically for arbitrary values of lambda n, where lambda is the pertu ...
We develop new tools for isolating CFTs using the numerical bootstrap. A "cutting surface" algorithm for scanning OPE coefficients makes it possible to find islands in high-dimensional spaces. Together with recent progress in large-scale semidefinite progr ...
We present a systematic method to expand in components four dimensional superconformal multiplets. The results cover all possible N = 1 multiplets and some cases of interest for N = 2. As an application of the formalism we prove that certain N = 2 spinning ...
We set up a scattering experiment of matter against an impurity which separates two generic one-dimensional critical quantum systems. We compute the flux of reflected and transmitted energy, thus defining a precise measure of the transparency of the interf ...
The scaling dimensions of charged operators in conformal field theory were recently computed in a large charge expansion. We verify this expansion in a dual AdS model. Specifically, we numerically construct solitonic boson star solutions of Einstein-Maxwel ...
The aim of this review-style paper is to provide a concise, self-contained and unified presentation of the construction and main properties of Gaussian multiplicative chaos (GMC) measures for log-correlated fields in 2D in the subcritical regime. By consid ...
This thesis presents studies in strongly coupled Renormalization Group (RG) flows. In the first part, we analyze the subject of non-local Conformal Field Theories (CFTs), arising as continuous phase transitions of statistical models with long-range interac ...
This thesis is devoted to the study of the local fields in the Ising model. The scaling limit of the critical Ising model is conjecturally described by Conformal Field Theory. The explicit predictions for the building blocks of the continuum theory (spin a ...