Publication

Crystalline and correlated phases in two-dimensional transition metal dichalcogenides

Diego José Pasquier
2019
Thèse EPFL
Résumé

This thesis is dedicated to the study of various aspects of the electronic structure of two-dimensional transition metal dichalcogenides (TMDs) of chemical composition MX2_2 (where M is a transition metal atom and X= S, Se, Te), using a combination of \textit{ab inito} density-functional methods.

We first address the relative stability of the 1T1T and 1H1H phases of two-dimensional TMDs as a function of the column of the transition metal atom in the periodic table. Using a Wannier-function approach, we calculate crystal field and ligand field parameters for a broad range of members of this family of materials. Taking TaS2_2 as an example, we show how the splitting of the dd electron states arises from an interplay of electrostatic effects and hybridization with the ligands' ss, pp and dd states. We show that the ligand field alone cannot explain the stabilization of the 1H1H polymorph for d1d^1 and d2d^2 TMDs, and that band structure effects are dominant. We present trends of the calculated parameters across the periodic table, and argue that these allow developing simple chemical intuition.

Secondly, we study the occurrence of charge density wave phases and periodic lattice distortion in metallic 1T1T transition metal dichalcogenides. The phonon dispersion and fermiology of representative examples with different dd electron counts are studied as a function of doping. Two qualitatively different behaviours are found as a function of the filling of the t2gt_{2g} subshell. We argue that away from half-filling, weak-coupling nesting arguments are a useful starting point for understanding, whereas closer to half-filling a strong-coupling real-space picture is more correct. Using Wannier functions, it is shown that strong metal-metal bonds are formed and that simple bond-counting arguments apply.

Thirdly, the recently synthesized 1T1T phase of NbSe2_2, in monolayer form, is investigated from first principles. We find that 1T1T-NbSe2_2 is unstable towards the formation of an incommensurate charge density wave phase, whose periodicity can be understood from the Fermi surface topology. We investigate different scenarios for the experimentally observed superlattice and insulating behaviour, and conclude that the star-of-David phase is the most stable commensurate charge density wave phase. We study the electronic properties of the star-of-David phase at various levels of theory and confirm its Mott insulating character, as speculated and in analogy with TaS2_2. The Heisenberg exchange couplings are found to be ferromagnetic, which suggests a parallel with the so-called flat-band ferromagnetism in certain multiband Hubbard models.

Finally, we address the possibility of the occurrence of the excitonic insulator phase in single-layer TiSe2_2. The relative role of electron-electron and electron-phonon interactions in driving the charge density wave in layered and two-dimensional TiSe2_2 has been disputed and is still unresolved. We calculate the electronic structure and finite-momentum exciton spectrum from hybrid density functional theory. We find that in a certain range of parameters, excitonic effects are strong and the material is close to a pure excitonic insulator instability. A possible necessary condition for the physical realization of a pure excitonic insulator is proposed.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.