Segment-level training of ANNs based on acoustic confidence measures for hybrid HMM/ANN Speech Recognition
Publications associées (40)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Audio segmentation, in general, is the task of segmenting a continuous audio stream in terms of acoustically homogenous regions, where the rule of homogeneity depends on the task. This thesis aims at developing and investigating efficient, robust and unsup ...
Audio segmentation, in general, is the task of segmenting a continuous audio stream in terms of acoustically homogenous regions, where the rule of homogeneity depends on the task. This thesis aims at developing and investigating efficient, robust and unsup ...
Audio segmentation, in general, is the task of segmenting a continuous audio stream in terms of acoustically homogenous regions, where the rule of homogeneity depends on the task. This thesis aims at developing and investigating efficient, robust and unsup ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
In this paper we define and investigate a set of confidence measures based on hybrid Hidden Markov Model/Artificial Neural Network (HMM/ANN) acoustic models. All these measures are using the neural network to estimate the local phone posterior probabilitie ...
In this paper, we present a new approach towards high performance speech/music discrimination on realistic tasks related to the automatic transcription of broadcast news. In the approach presented here, the (local) Probability Density Function (PDF) estima ...
In this paper, we present a new approach towards high performance speech/music discrimination on realistic tasks related to the automatic transcription of broadcast news. In the approach presented here, the (local) Probability Density Function (PDF) estima ...
In this paper we define and investigate a set of confidence measures based on hybrid Hidden Markov Model/Artificial Neural Network (HMM/ANN) acoustic models. All these measures are using the neural network to estimate the local phone posterior probabilitie ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...