End-to-End Acoustic Modeling using Convolutional Neural Networks for HMM-based Automatic Speech Recognition
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Using phone posterior probabilities has been increasingly explored for improving automatic speech recognition (ASR) systems. In this paper, we propose two approaches for hierarchically enhancing these phone posteriors, by integrating long acoustic context, ...
In this thesis, we propose a novel approach for speaker and speech recognition involving localized, binary, data-driven features. The proposed approach is largely inspired by similar localized approaches in the computer vision domain. The success of these ...
Ecole Polytechnique Federale de Lausanne (EPFL)2011
In this thesis, we propose a novel approach for speaker and speech recognition involving localized, binary, data-driven features. The proposed approach is largely inspired by similar localized approaches in the computer vision domain. The success of these ...
A novel parts-based binary-valued feature termed Boosted Binary Feature (BBF) was recently proposed for ASR. Such features look at specific pairs of time-frequency bins in the spectro-temporal plane. The most discriminative of these features are selected b ...
In this thesis, we investigate a hierarchical approach for estimating the phonetic class-conditional probabilities using a multilayer perceptron (MLP) neural network. The architecture consists of two MLP classifiers in cascade. The first MLP is trained in ...
We propose a novel fully automatic framework to detect which meeting participant is currently holding the conversational floor and when the current speaker turn is going to finish. Two sets of experiments were conducted on a large collection of multiparty ...
The EMIME project aims to build a personalized speech-to-speech translator, such that spoken input of a user in one language is used to produce spoken output that still sounds like the user's voice however in another language. This distinctiveness makes un ...
The EMIME project aims to build a personalized speech-to-speech translator, such that spoken input of a user in one language is used to produce spoken output that still sounds like the user's voice however in another language. This distinctiveness makes un ...
In this paper we propose a new technique for robust keyword spotting that uses bidirectional Long Short-Term Memory (BLSTM) recurrent neural nets to incorporate contextual information in speech decoding. Our approach overcomes the drawbacks of generative H ...
This paper demonstrates the robustness of group-delay based features for speech processing. An analysis of group delay functions is presented which show that these features retain formant structure even in noise. Furthermore, a speaker verification task pe ...