End-to-End Acoustic Modeling using Convolutional Neural Networks for HMM-based Automatic Speech Recognition
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper investigates the use of microphone arrays to acquire and recognise speech in meetings. Meetings pose several interesting problems for speech processing, as they consist of multiple competing speakers within a small space, typically around a tabl ...
In this paper, we present a new approach towards high performance speech/music discrimination on realistic tasks related to the automatic transcription of broadcast news. In the approach presented here, the (local) Probability Density Function (PDF) estima ...
In this paper, we present a new approach towards user-custom-ized password speaker verification combining the advantages of hybrid HMM/ANN systems, using Artificial Neural Networks (ANN) to estimate emission probabilities of Hidden Markov Models, and Gaus ...
In this paper, we present an HMM2 based method for speaker normalization. Introduced as an extension of Hidden Markov Model (HMM), HMM2 differentiates itself from the regular HMM in terms of the emission density modeling, which is done by a set of state-de ...
In this communication we first review the human speech production process and feature extraction approaches commonly used in a speaker verification system. Experiments on the telephone speech {NTIMIT} database suggest that the performance degradation of a ...
In this paper, we present an HMM2 based method for speaker normalization. Introduced as an extension of Hidden Markov Model (HMM), HMM2 differentiates itself from the regular HMM in terms of the emission density modeling, which is done by a set of state-de ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
This paper presents the theoretical basis and preliminary experimental results of a new HMM model, referred to as HMM2, which can be considered as a mixture of HMMs. In this new model, the emission probabilities of the temporal (primary) HMM are estimated ...
One of the difficulties in Automatic Speech Recognizer (ASR) is the pronunciation variability. Each word (modeled by a baseline phonetic transcription in the ASR dictionary) can be pronounced in many different ways depending on many complex qualitative and ...
In this paper, we present a new approach towards user-custom-ized password speaker verification combining the advantages of hybrid HMM/ANN systems, using Artificial Neural Networks (ANN) to estimate emission probabilities of Hidden Markov Models, and Gaus ...