Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We investigate the stability of a thin Newtonian fluid spreading on a horizontal cylinder under the action of gravity. The capillary ridge forming at the advancing front is known to be unstable with respect to spanwise perturbations, resulting in the formation of fingers. In contrast to the classic case of a flow over an inclined plane, the gravity components along a cylindrical substrate vary in space and the draining flow is time-dependent, making a modal stability analysis inappropriate. A linear optimal transient growth analysis is instead performed to find the optimal spanwise wavenumber. We not only consider the optimal perturbations of the initial film thickness, as commonly done in the literature, but also the optimal topographical perturbations of the substrate, which are of significant practical relevance. We found that, in both cases, the optimal gains are obtained when the perturbation structures are the least affected by the time horizon. The optimal spanwise wavenumber is found to be dependent on the front location, due to the dependence of the characteristic length of the capillary ridge on its polar location.
Mohammad Khaja Nazeeruddin, Yong Ding, Xuehui Liu, Yi Yang, Cheng Liu
Pankaj Kumar Yadav, Daniel Prochowicz