DeepDreamthumb|250px| Photographie avant et après un traitement partiel par DeepDream. thumb| Étape avancée du traitement d'une photographie de trois hommes. DeepDream est un programme de vision par ordinateur créé par Google qui utilise un réseau neuronal convolutif pour trouver et renforcer des structures dans des images en utilisant des paréidolies créées par algorithme, donnant ainsi une apparence hallucinogène à ces images. thumb|left|Photographie de ciel nuageux ; à droite, sa transformation par DeepDream.
Champ récepteurLe champ récepteur d'un neurone sensoriel ou d'un neurone sensitif est le volume de l'espace qui modifie la réponse de ce neurone, quand un stimulus suffisamment puissant et rapide survient en son sein. De tels champs récepteurs ont été identifiés dans les systèmes visuel, auditif et somatosensoriel. Ainsi, le champ récepteur d'un neurone du système visuel est la portion du champ visuel qui, lorsqu'on présente un stimulus lumineux en son sein, modifie la réponse de ce neurone.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Commonsense reasoningIn artificial intelligence (AI), commonsense reasoning is a human-like ability to make presumptions about the type and essence of ordinary situations humans encounter every day. These assumptions include judgments about the nature of physical objects, taxonomic properties, and peoples' intentions. A device that exhibits commonsense reasoning might be capable of drawing conclusions that are similar to humans' folk psychology (humans' innate ability to reason about people's behavior and intentions) and naive physics (humans' natural understanding of the physical world).
Scale-invariant feature transform[[Fichier:Matching of two images using the SIFT method.jpg|thumb|right|alt=Exemple de mise en correspondance de deux images par la méthode SIFT : des lignes vertes relient entre eux les descripteurs communs à un tableau et une photo de ce même tableau, de moindre qualité, ayant subi des transformations. |Exemple de résultat de la comparaison de deux images par la méthode SIFT (Fantasia ou Jeu de la poudre, devant la porte d’entrée de la ville de Méquinez, par Eugène Delacroix, 1832).
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Patch-clampvignette|Enregistrement (picoAmpère en fonction du temps) d'un patch-clamp montrant les passages entre deux états de conductance d'un canal ionique : fermé (ligne du haut) et ouvert (ligne du bas). Patch-clamp est un terme anglais désignant une technique électrophysiologique d'enregistrement des courants ioniques transitant à travers les membranes cellulaires. Cette technique consiste à mettre en continuité électrique une micro-pipette en verre (diamètre de contact de l'ordre de 1 μm) remplie d'une solution ionique de composition définie avec la membrane d'une cellule vivante isolée.
Patch-sequencingPatch-sequencing (patch-seq) is a method designed for tackling specific problems involved in characterizing neurons. As neural tissues are one of the most transcriptomically diverse populations of cells, classifying neurons into cell types in order to understand the circuits they form is a major challenge for neuroscientists. Combining classical classification methods with single cell RNA-sequencing post-hoc has proved to be difficult and slow.
Cortex visuelLe occupe le lobe occipital du cerveau et est chargé de traiter les informations visuelles. Le cortex visuel couvre le lobe occipital, sur les faces latérales et internes, et empiète sur le lobe pariétal et le lobe temporal. L'étude du cortex visuel en neurosciences a permis de le découper en une multitude de sous-régions fonctionnelles (V1, V2, V3, V4, MT) qui traitent chacune ou collectivement des multiples propriétés des informations provenant des voies visuelles (formes, couleurs, mouvements).