Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
For mobile robots to localize robustly, actively considering the perception requirement at the planning stage is essential. In this paper, we propose a novel representation for active visual localization. By formulating the Fisher information and sensor visibility carefully, we are able to summarize the localization information into a discrete grid, namely the Fisher information field. The information for arbitrary poses can then be computed from the field inconstant time, without the need of costly iterating all the 3D landmarks. Experimental results on simulated and real-world data show the great potential of our method in efficient active localization and perception-aware planning. To benefit related research, we release our implementation of the information field to the public.
Martin Vetterli, Mihailo Kolundzija, Adrien Guillaume Olivier Hoffet, Adam James Scholefield, Frederike Dümbgen
Alcherio Martinoli, Chiara Ercolani, Faezeh Rahbar