Evaluating and Interpreting Deep Convolutional Neural Networks via Non-negative Matrix Factorization
Publications associées (439)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
To obtain a more complete understanding of material microstructure at the nanoscale and to gain profound insights into their properties, there is a growing need for more efficient and precise methods that can streamline the process of 3D imaging using a tr ...
End-to-end learning methods like deep neural networks have been the driving force in the remarkable progress of machine learning in recent years. However, despite their success, the deployment process of such networks in safety-critical use cases, such as ...
According to the proposed Artificial Intelligence Act by the European Comission (expected to pass at the end of 2023), the class of High-Risk AI Systems (Title III) comprises several important applications of Deep Learning like autonomous driving vehicles ...
The successes of deep learning for semantic segmentation can in be, in part, attributed to its scale: a notion that encapsulates the largeness of these computational architectures and the labeled datasets they are trained on. These resource requirements hi ...
Natural language processing and other artificial intelligence fields have witnessed impressive progress over the past decade. Although some of this progress is due to algorithmic advances in deep learning, the majority has arguably been enabled by scaling ...
Despite their incredible performance, it is well reported that deep neural networks tend to be overoptimistic about their prediction confidence. Finding effective and efficient calibration methods for neural networks is therefore an important endeavour tow ...
Deep Neural Networks (DNNs) have obtained impressive performance across tasks, however they still remain as black boxes, e.g., hard to theoretically analyze. At the same time, Polynomial Networks (PNs) have emerged as an alternative method with a promising ...
Explainable AI (XAI) methods aim to describe the decision process of deep neural networks. Early XAI methods produced visual explanations, whereas more recent techniques generate multimodal explanations that include textual information and visual represent ...
Deep learning has achieved remarkable success in various challenging tasks such as generating images from natural language or engaging in lengthy conversations with humans.The success in practice stems from the ability to successfully train massive neural ...
Deep Neural Networks (DNNs) have obtained impressive performance across tasks, however they still remain as black boxes, e.g., hard to theoretically analyze. At the same time, Polynomial Networks (PNs) have emerged as an alternative method with a promising ...