Exact invariant solution reveals the origin of self-organized oblique turbulent-laminar stripes
Publications associées (37)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
To enforce the conservation of mass principle, a pressure Poisson equation arises in the numerical solution of incompressible fluid flow using the pressure-based segregated algorithms such as projection methods. For unsteady flows, the pressure Poisson equ ...
We consider fluid flows, governed by the Navier-Stokes equations, subject to a steady symmetry-breaking bifurcation and forced by a weak noise acting on a slow timescale. By generalizing the multiple-scale weakly nonlinear expansion technique employed in t ...
The thesis is dedicated to the study of two main partial differential equations (PDEs) in fluid dynamics: the Navier-Stokes equations, which describe the motion of incompressible fluids, and the transport equation with divergence-free velocity fields, whic ...
Understanding diffusive processes across the sediment-water interface is important for quantifying hyporheic exchanges and related biogeochemical processes (e.g., denitrification, biomass growth). Viscous, turbulent and dispersive effects all contribute to ...
When laminar shear flows in large wall-bounded domains transition to turbulence, the flow exhibits spatio-temporally chaotic dynamics. Despite its chaotic dynamics, the flow may self-organize into characteristic spatially periodic patterns of unknown origi ...
Steep mountain streams exhibit shallow waters with roughness elements such as stones and pebbles that are comparable in size to flow depth. Owing to the difficulty in measuring fluid velocities at the interface, i.e., from the rough permeable bed to the fr ...
This work is devoted to the study of the main models which describe the motion of incompressible fluids, namely the Navier-Stokes, together with their hypodissipative version, and the Euler equations. We will mainly focus on the analysis of non-smooth weak ...
While it is well known that constant rotation induces linear dispersive effects in various fluid models, we study here its effect on long time nonlinear dynamics in the inviscid setting. More precisely, we investigate stability in the 3d rotating Euler equ ...
Weak solutions arise naturally in the study of the Navier-Stokes and Euler equations both from an abstract regularity/blow-up perspective and from physical theories of turbulence. This thesis studies the structure and size of singular set of such weak solu ...
The present paper concerns the linear fate of transverse perturbations in a gravity-driven, thin-film flow over a soluble substrate. We propose a reduced-order model, based on a boundary-layer treatment of the solute transport and a depth-integration of th ...