Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In-band full-duplex systems are able to transmit and receive information simultaneously on the same frequency band. Due to the strong self-interference caused by the transmitter to its own receiver, the use of non-linear digital self interference cancellation is essential. In this work, we present a hardware architecture for a neural network based non-linear self-interference canceller and we compare it with our own hardware implementation of a conventional polynomial based canceller. We show that, for the same cancellation performance, the neural network canceller has a significantly higher throughput and requires fewer hardware resources.
Andreas Peter Burg, Alexios Konstantinos Balatsoukas Stimming, Andreas Toftegaard Kristensen, Yann Kurzo