Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper presents an ultra-low-power voice activity detector (VAD). It uses analog signal processing for acoustic feature extraction (AFE) directly on the microphone output, approximate event-driven analog-to-digital conversion (ED-ADC), and digital deep neural network (DNN) for speech/non-speech classification. New circuits, including the low-noise amplifier, bandpass filter, and full-wave rectifier contribute to the more than 9x normalized power/channel reduction in the feature extraction front-end compared to the best prior art. The digital DNN is a three-hidden-layer binarized multilayer perceptron (MLP) with a 2-neuron output layer and a 48-neuron input layer that receives parallel event streams from the ED-ADCs. To obtain the DNN weights via off-line training, a customized front-end model written in python is constructed to accelerate feature generation in software emulation, and the model parameters are extracted from Spectre simulations. The chip, fabricated in 0.18-mu m CMOS, has a core area of 1.66 x 1.52 mm(2) and consumes 1 mu W. The classification measurements using the 1-hour 10-dB signal-to-noise ratio audio with restaurant background noise show a mean speech/non-speech hit rate of 84.4%/85.4% with a 1.88%/4.65% 1-sigma variation across ten dies that are all loaded with the same weights.
Mihai Adrian Ionescu, Teodor Rosca