Birkhoff polytopeThe Birkhoff polytope Bn (also called the assignment polytope, the polytope of doubly stochastic matrices, or the perfect matching polytope of the complete bipartite graph ) is the convex polytope in RN (where N = n2) whose points are the doubly stochastic matrices, i.e., the n × n matrices whose entries are non-negative real numbers and whose rows and columns each add up to 1. It is named after Garrett Birkhoff. The Birkhoff polytope has n! vertices, one for each permutation on n items.
Système de preuve interactivevignette|504x504px|Un système de preuve interactive est composé de deux machines abstraites : un prouveur et un vérificateur qui s'échangent des messages. En théorie de la complexité des algorithmes, un système de preuve interactive est un protocole formel de démonstration de théorèmes qui fait intervenir deux participants qui échangent des messages. Cela permet de définir des classes de complexité intéressantes, notamment la classe IP qui est le modèle utilisé dans le théorème PCP qui caractérise la classe NP.
Problème à promesseDans la théorie de la complexité computationnelle, un problème à promesse est une généralisation d'un problème de décision où l'entrée doit appartenir à un sous-ensemble donné de toutes les entrées possibles (la promesse ou précondition), et la sortie reste binaire. Contrairement aux problèmes de décision, les instances positives et négatives n'épuisent pas l'ensemble de toutes les entrées. Si une entrée qui ne satisfait pas la promesse est donnée à un algorithme pour résoudre un problème de promesse, l'algorithme est autorisé à produire n'importe quoi, et peut même ne pas s'arrêter.
Polyhedral combinatoricsPolyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex).
Thèse de Cobhamthumb|Le graphique montre le temps en millisecondes pour résoudre des instances du problème du sac à dos en fonction de la taille d'entrée n. L'expérience a été réalisée sur un ordinateur Pentium III 933 MHz (les données proviennent d'une moyenne sur 100 instances à chaque fois). En informatique, la thèse de Cobham, aussi connue sous la thèse de Cobham–Edmonds (nommée d'après Alan Cobham et Jack Edmonds) postule que les problèmes calculables « facilement » sont les problèmes calculables en temps polynomial.
Thèse de ChurchLa thèse de Church est une thèse concernant la définition de la notion de calculabilité. Dans une forme dite « physique », elle affirme que la notion physique de la calculabilité, définie comme étant tout traitement systématique réalisable par un processus physique ou mécanique, peut être exprimée par un ensemble de règles de calcul, défini de plusieurs façons dont on a pu démontrer mathématiquement qu'elles sont équivalentes.
Conjecture des jeux uniquesLa conjecture des jeux uniques (en anglais Unique Games Conjecture et souvent abrégée UGC) est une conjecture en théorie de la complexité, proposée par Subhash Khot en 2002. Selon cette conjecture, résoudre de manière approximative un certain problème spécifique est NP-difficile. Elle a d'importantes applications relatives à la complexité des algorithmes d'approximation ; le travail qui a été fourni autour de cette conjecture a également permis de démontrer des résultats relatifs à d'autres sujets, par exemple sur la stabilité des systèmes de vote.
Deterministic pushdown automatonIn automata theory, a deterministic pushdown automaton (DPDA or DPA) is a variation of the pushdown automaton. The class of deterministic pushdown automata accepts the deterministic context-free languages, a proper subset of context-free languages. Machine transitions are based on the current state and input symbol, and also the current topmost symbol of the stack. Symbols lower in the stack are not visible and have no immediate effect. Machine actions include pushing, popping, or replacing the stack top.