Hybrid regularisation and the (in)admissibility of ridge regression in infinite dimensional Hilbert spaces
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we study regression problems over a separable Hilbert space with the square loss, covering non-parametric regression over a reproducing kernel Hilbert space. We investigate a class of spectral/regularized algorithms, including ridge regressi ...
The proliferation of (low-cost) sensors provokes new challenges in data fusion. This is related to the correctness of stochastic characterization that is a prerequisite for optimal estimation of parameters from redundant observations. Different (statistica ...
The functional linear model extends the notion of linear regression to the case where the response and covariates are iid elements of an infinite-dimensional Hilbert space. The unknown to be estimated is a Hilbert-Schmidt operator, whose inverse is by defi ...
Metal cations often play an important role in shaping the three-dimensional structure of peptides. As an example, the model system AcPheAla5LysH+ is investigated in order to fully understand the forces that stabilize its helical structure. In particular, t ...
Every day tons of pollutants are emitted into the atmosphere all around the world. These pollutants are altering the equilibrium of our planet, causing profound changes in its climate, increasing global temperatures, and raising the sea level. The need to ...
We propose an estimator for the mean of a random vector in Rd that can be computed in time O(n3.5 + n2d) for n i.i.d. samples and that has error bounds matching the sub-Gaussian case. The only assumptions we make about the data distribution are that it has ...
Linear inverse problems are ubiquitous. Often the measurements do not follow a Gaussian distribution. Additionally, a model matrix with a large condition number can complicate the problem further by making it ill-posed. In this case, the performance of pop ...
Solving a linear inverse problem may include difficulties such as the presence of outliers and a mixing matrix with a large condition number. In such cases a regularized robust estimator is needed. We propose a new tau-type regularized robust estimator tha ...
This paper proposes a tradeoff between computational time, sample complexity, and statistical accuracy that applies to statistical estimators based on convex optimization. When we have a large amount of data, we can exploit excess samples to decrease stati ...
Evaluating the (dis)similarity of crystalline, disordered and molecular compounds is a critical step in the development of algorithms to navigate automatically the configuration space of complex materials. For instance, a structural similarity metric is cr ...