Publication

Exploring the Sources of Unexpected High Methane Concentrations and Fluxes From Alpine Headwater Streams

Résumé

The dynamics of methane generation and evasion from well-oxygenated, oligotrophic streams have been traditionally neglected. We estimated evasion of methane and assessed its sources and production pathways using a stable isotope approach in 16 oxygen-rich and C-poor (dissolved organic carbon: 55.32 +/- 57.56 mu mol/L) Alpine headwater streams. Methane was often supersaturated relative to the atmosphere (0.093 +/- 0.179 mu mol/L). Fluxes (0.87 +/- 1.34 mmol.m(-2).day(-1)) were unexpectedly high and comparable to those from high-latitude lakes and reservoirs. Our findings suggest that methane in the streambed was largely produced from carbon dioxide reduction, whereas acetoclastic pathways and major deliveries from adjacent soils, assessed from a mass balance, may have contributed to stream water methane. This study sheds new light on high-alpine streams as a hitherto unaccounted source of methane to the atmosphere. Plain Language Summary The greenhouse gas methane is naturally produced and emitted from organic matter rich freshwater ecosystems. Normally, this gas is produced in places where oxygen is absent. However, recent studies have shown that methane is also emitted from oxygen-rich rivers and streams. But the knowledge and understanding of the underlying processes that cause this paradox is currently poor. In this light, we investigated organic matter-poor and oxygen-rich Alpine streams to better understand the methane dynamics in those systems. We found that methane emissions from these streams are similar to emissions from organic-rich lakes and reservoirs at high latitudes, probably due to high gas exchange velocities in these steep environments. Methane that is found in the streambed of these streams is likely produced from inorganic carbon in oxygen-depleted sediment pockets, while in the stream water it likely originates mainly from adjacent soils. Headwater streams are most numerous in river networks worldwide, often organic matter poor and oxygen rich. Together with the strong potential for methane emissions, it is clear that Alpine streams should be considered in future methane emission budgets and knowledge about methane sources should be improved for effective mitigation of methane emissions.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (40)
Methane emissions
Increasing methane emissions are a major contributor to the rising concentration of greenhouse gases in Earth's atmosphere, and are responsible for up to one-third of near-term global heating. During 2019, about 60% (360 million tons) of methane released globally was from human activities, while natural sources contributed about 40% (230 million tons). Reducing methane emissions by capturing and utilizing the gas can produce simultaneous environmental and economic benefits.
Stream
A stream is a continuous body of surface water flowing within the bed and banks of a channel. Depending on its location or certain characteristics, a stream may be referred to by a variety of local or regional names. Long, large streams are usually called rivers, while smaller, less voluminous and more intermittent streams are known as streamlets, brooks or creeks. The flow of a stream is controlled by three inputs – surface runoff (from precipitation or meltwater), daylighted subterranean water, and surfaced groundwater (spring water).
Méthane
Le méthane est un composé chimique de formule chimique , découvert et isolé par Alessandro Volta entre 1776 et 1778. C'est l'hydrocarbure le plus simple et le premier terme de la famille des alcanes. Comme fluide frigorigène, il porte la dénomination « R50 » dans la nomenclature des réfrigérants, régie par la d'ANSI/ASHRAE. Assez abondant dans le milieu naturel, le méthane est un combustible à fort potentiel.
Afficher plus
Publications associées (65)

Spatio-temporal patterns and drivers of CH4 and CO2 fluxes from rivers and lakes in highly urbanized areas

Alexandre Buttler

Gaseous carbon exchange at the water-air interface of rivers and lakes is an essential process for regional and global carbon cycle assessments. Many studies have shown that rivers surrounding urban landscapes can be hotspots for greenhouse gas (GHG) emiss ...
Amsterdam2024

Lotic-SIPCO2: Adaptation of an open-source CO2 sensor system and examination of associated emission uncertainties across a range of stream sizes and land uses

Andrew Lean Robison

River networks play a crucial role in the global carbon cycle, as relevant sources of carbon dioxide (CO2) to the atmosphere. Advancements in high-frequency monitoring in aquatic environments have enabled measurement of dissolved CO2 concentration at tempo ...
Hoboken2024

Glacier retreat and increasing vegetation cover alter the sources and sinks of organic and inorganic carbon in alpine streams

Nicola Deluigi, Andrew Lean Robison

High-mountain ecosystems are experiencing acute effects of climate change, most visibly through glacier recession and the greening of the terrestrial environment. The streams draining these landscapes are affected by these shifts, integrating hydrologic, g ...
2023
Afficher plus
MOOCs associés (3)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Analyse du cycle de vie environmental
MOOC introduction à la pensée du cycle de vie et aux concepts théoriques pour réaliser et critiquer une analyse du cycle de vie.
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.