Sequential pattern miningSequential pattern mining is a topic of data mining concerned with finding statistically relevant patterns between data examples where the values are delivered in a sequence. It is usually presumed that the values are discrete, and thus time series mining is closely related, but usually considered a different activity. Sequential pattern mining is a special case of structured data mining. There are several key traditional computational problems addressed within this field.
Filtrage collaboratifvignette|Illustration d'un filtrage collaboratif où un système de recommandation doit prédire l'évaluation d'un objet par un utilisateur en se basant sur les évaluations existantes. Le filtrage collaboratif (de l’anglais : en) regroupe l'ensemble des méthodes qui visent à construire des systèmes de recommandation utilisant les opinions et évaluations d'un groupe pour aider l'individu. Il existe trois principaux axes de recherche dans ce domaine, dépendant chacun des données recueillies sur les utilisateurs du système : le filtrage collaboratif actif ; le filtrage collaboratif passif ; le filtrage basé sur le contenu.
Data PreprocessingData preprocessing can refer to manipulation or dropping of data before it is used in order to ensure or enhance performance, and is an important step in the data mining process. The phrase "garbage in, garbage out" is particularly applicable to data mining and machine learning projects. Data collection methods are often loosely controlled, resulting in out-of-range values, impossible data combinations, and missing values, amongst other issues. Analyzing data that has not been carefully screened for such problems can produce misleading results.
Gestion de contenu d'entrepriseLa gestion de contenu d'entreprise (en anglais Enterprise Content Management : ECM) vise à gérer l'ensemble des contenus d'une organisation. Il s'agit de prendre en compte sous forme électronique les informations qui ne sont pas structurées, comme les documents électroniques, par opposition à celles déjà structurées dans les bases de données. Elle comprend les phases de création/capture, stockage, indexation, gestion, nettoyage, distribution, publication, recherche et archivage, en faisant le lien du contenu avec les processus métier.
Multiple sequence alignmentMultiple sequence alignment (MSA) may refer to the process or the result of sequence alignment of three or more biological sequences, generally protein, DNA, or RNA. In many cases, the input set of query sequences are assumed to have an evolutionary relationship by which they share a linkage and are descended from a common ancestor. From the resulting MSA, sequence homology can be inferred and phylogenetic analysis can be conducted to assess the sequences' shared evolutionary origins.
Alignement de séquencesEn bio-informatique, l'alignement de séquences (ou alignement séquentiel) est une manière de représenter deux ou plusieurs séquences de macromolécules biologiques (ADN, ARN ou protéines) les unes sous les autres, de manière à en faire ressortir les régions homologues ou similaires. L'objectif de l'alignement est de disposer les composants (nucléotides ou acides aminés) pour identifier les zones de concordance. Ces alignements sont réalisés par des programmes informatiques dont l'objectif est de maximiser le nombre de coïncidences entre nucléotides ou acides aminés dans les différentes séquences.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Système d'aide à la décision cliniqueUn système d'aide à la décision clinique (SADC ; en anglais, clinical decision support system ou CDSS) est un système d'aide à la décision pour la santé qui fournit aux cliniciens, au personnel, aux patients ou à d'autres personnes des connaissances et des informations spécifiques à la personne, filtrées ou présentées intelligemment au moment opportun, afin d'améliorer la santé et les soins de santé. Un système d'aide à la décision clinique englobe une variété d'outils pour améliorer la prise de décision dans le flux de travail clinique.