An improved objective metric to predict image quality using deep neural networks
Publications associées (128)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
SAR and optical imagery provide highly complementary information about observed scenes. A combined use of these two modalities is thus desirable in many data fusion scenarios. However, any data fusion task requires measurements to be accurately aligned. Wh ...
We propose an ultra-low-power (ULP) image signal processor (ISP) that performs on-the-fly in-processing frame compression/decompression and hierarchical event recognition to exploit the temporal and spatial sparsity in an image sequence. This approach redu ...
Deep neural networks have recently achieved tremen-dous success in image classification. Recent studies havehowever shown that they are easily misled into incorrectclassification decisions by adversarial examples. Adver-saries can even craft attacks by que ...
We experimentally solve the problem of maximizing capacity under a total supply power constraint in a massively parallel submarine cable context, i.e., for a spatially uncoupled system in which fiber Kerr nonlinearity is not a dominant limitation. By using ...
Deep Neural Networks (DNNs) have the potential to improve the quality of image-based 3D reconstructions. However, the use of DNNs in the context of 3D reconstruction from large and high-resolution image datasets is still an open challenge, due to memory an ...
Despite significant progress toward super resolving more realistic images by deeper convolutional neural networks (CNNs), reconstructing fine and natural textures still remains a challenging problem. Recent works on single image super resolution (SISR) are ...
Second-order information, in the form of Hessian- or Inverse-Hessian-vector products, is a fundamental tool for solving optimization problems. Recently, there has been a tremendous amount of work on utilizing this information for the current compute and me ...
With ever greater computational resources and more accessible software, deep neural networks have become ubiquitous across industry and academia.
Their remarkable ability to generalize to new samples defies the conventional view, which holds that complex, ...
We introduce a method for automated grading of handwritten essays written by foreign language learners of French. The handwriting recognition system allows digitising the essays for further processing and functions at a low character error rate. The transc ...
A new approach is proposed to detect edges based on an artificial neural network (ANN). Some elementary continuous and discontinuous functions interpolated in the polynomial space and their continuity are used as the training sets to train a back propagati ...