Strategies for increasing the throughput of super-resolution microscopies
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Fluorescence super-resolution microscopy has allowed unprecedented insight into the workings of biological systems below the diffraction limit of light. Over the past decade, it has overcome several challenges to deliver 3D, multi-color and faster imaging ...
Light microscopy is a tool of paramount importance for biologists and has been constantly improved for the past four centuries. Despite many recent developments, microscopy techniques still require improvement, especially to reach better temporal and spect ...
Optical microscopy is one widely used tool to study cell functions and the interaction of molecules at a sub-cellular level. Optical microscopy techniques can be broadly divided into two categories: partially coherent and incoherent. Coherent microscopy te ...
Studying dynamic biological processes, such as heart development and function in zebrafish embryos, often relies on multi-channel fluorescence labeling to distinguish multiple anatomical features, yet also demands high frame rates to capture rapid cell mot ...
Fluorescence microscopy is the method of choice to monitor dynamic processes in living cells due to its non-invasive nature. A variety of different fluorophores and labeling systems are currently used to selectively visualise structures or biomolecules of ...
Super-resolution fluorescence microscopy is widespread, owing to its demonstrated ability to resolve dynamical processes within cells and to identify the structure and position of specific proteins in the interior of protein complexes. Nowadays, subcellula ...
Fluorescence confocal laser-scanning microscopy (LSM) is one of the most popular tools for life science research. This popularity is expected to grow thanks to single-photon array detectors tailored for LSM. These detectors offer unique single-photon spati ...
In fluorescence microscopy live-cell imaging, there is a critical trade-off between the signal-to-noise ratio and spatial resolution on one side, and the integrity of the biological sample on the other side. To obtain clean high-resolution (HR) images, one ...
Background: Structured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high-resolution imaging of fixed cells or tis ...
Overcoming the classical diffraction limit in optical microscopy is known to be achievable by a variety of far-field and near-field microscopy techniques. More recently, so-called micro-object-based optical super-resolution microscopy techniques have emerg ...