Deep learning assisted image transmission in multimode fibers
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This thesis focuses on two selected learning problems: 1) statistical inference on graphs models, and, 2) gradient descent on neural networks, with the common objective of defining and analysing the measures that characterize the fundamental limits.In the ...
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
State-of-the-art (SOTA) face recognition systems generally use deep convolutional neural networks (CNNs) to extract deep features, called embeddings, from face images. The face embeddings are stored in the system's database and are used for recognition of ...
Neuromorphic computing is a wide research field aimed to the realization of brain-inspired
hardware, apt to tackle computation of unstructured data more efficiently than currently done
with standard computational units. Oscillatory neural networks are know ...
Deep neural networks trained on physical losses are emerging as promising surrogates for nonlinear numerical solvers. These tools can predict solutions to Maxwell's equations and compute gradients of output fields with respect to the material and geometric ...
Deep neural networks have been empirically successful in a variety of tasks, however their theoretical understanding is still poor. In particular, modern deep neural networks have many more parameters than training data. Thus, in principle they should over ...
Stereo reconstruction is a problem of recovering a 3d structure of a scene from a pair of images of the scene, acquired from different viewpoints. It has been investigated for decades and many successful methods were developed.The main drawback of these ...
Structural Health Monitoring (SHM) has greatly benefited from computer vision. Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure. In this work, we focus on the problem of bridge surface s ...
We present an efficient and accurate people detection approach based on deep learning to detect people attacks and intrusion in video surveillance scenarios Unlike other approaches using background segmentation and pre-processing techniques, which are not ...
Decentralized training of deep learning models enables on-device learning over networks, as well as efficient scaling to large compute clusters. Experiments in earlier works reveal that, even in a data-center setup, decentralized training often suffers fro ...