Publication

Tensor Robust Pca On Graphs

Publications associées (40)

Rank-Adaptive Time Integration Of Tree Tensor Networks

Gianluca Ceruti

A rank-adaptive integrator for the approximate solution of high-order tensor differential equations by tree tensor networks is proposed and analyzed. In a recursion from the leaves to the root, the integrator updates bases and then evolves connection tenso ...
SIAM PUBLICATIONS2023

STREAMING TENSOR TRAIN APPROXIMATION

Daniel Kressner

Tensor trains are a versatile tool to compress and work with high-dimensional data and functions. In this work we introduce the streaming tensor train approximation (STTA), a new class of algorithms for approximating a given tensor ' in the tensor train fo ...
Philadelphia2023

Preserving the positivity of the deformation gradient determinant in intergrid interpolation by combining RBFs and SVD: Application to cardiac electromechanics

Alfio Quarteroni, Francesco Regazzoni

The accurate, robust and efficient transfer of the deformation gradient tensor between meshes of different resolution is crucial in cardiac electromechanics simulations. This paper presents a novel method that combines rescaled localized Radial Basis Funct ...
Lausanne2023

A Benders decomposition for maximum simulated likelihood estimation of advanced discrete choice models

Michel Bierlaire, Claudia Bongiovanni

In this paper, we formulate a mixed integer linear program (MILP) for the simulated maximum likelihood estimation (MLSE) problem and devise a Benders decomposition approach to speed up the solution process. This framework can be applied to any advanced dis ...
2022

A Benders decomposition for maximum simulated likelihood estimation of advanced discrete choice models

Michel Bierlaire, Claudia Bongiovanni

In this paper, we formulate a mixed integer linear program (MILP) for the simulated maximum likelihood estimation (MLSE) problem and devise a Benders decomposition approach to speed up the solution process. This framework can be applied to any advanced dis ...
2022

A Benders decomposition for maximum simulated likelihood estimation of advanced discrete choice models

Michel Bierlaire, Claudia Bongiovanni

In this paper, we formulate a mixed integer linear program (MILP) for the simulated maximum likelihood estimation (MLSE) problem and devise a Benders decomposition approach to speed up the solution process. This framework can be applied to any advanced dis ...
2022

A Benders decomposition for maximum simulated likelihood estimation of advanced discrete choice models

Michel Bierlaire, Claudia Bongiovanni

In this paper, we formulate a mixed integer linear program (MILP) for the simulated maximum likelihood estimation (MLSE) problem and devise a Benders decomposition approach to speed up the solution process. This framework can be applied to any advanced dis ...
2022

A new method for lattice reduction using directional and hyperplanar shearing

Cyril Cayron

A geometric method of lattice reduction based on cycles of directional and hyperplanar shears is presented. The deviation from cubicity at each step of the reduction is evaluated by a parameter called 'basis rhombicity' which is the sum of the absolute val ...
INT UNION CRYSTALLOGRAPHY2022

Mutual information for low-rank even-order symmetric tensor estimation

Nicolas Macris, Jean François Emmanuel Barbier, Clément Dominique Luneau

We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method orig ...
OXFORD UNIV PRESS2021

Distributed Design for Decentralized Control using Chordal Decomposition and ADMM

Maryam Kamgarpour

We propose a distributed design method for decentralized control by exploiting the underlying sparsity properties of the problem. Our method is based on chordal decomposition of sparse block matrices and the alternating direction method of multipliers (ADM ...
2020

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.