Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Non-invasive characterization of brain structure has been made possible by the introduction of magnetic resonance imaging (MRI). Graph modeling of structural connectivity has been useful, but is often limited to defining nodes as regions from a brain atlas. Here, we propose two methods for encoding structural connectivity in a huge brain graph at the voxel-level resolution (i.e., 850'000 voxels) based on diffusion tensor imaging (DTI) and the orientation density functions (ODF), respectively. The eigendecomposition of the brain graph's Laplacian operator is then showing highly resolved eigenmodes that reflect distributed structural features which are in good correspondence with major white matter tracks. To investigate the intrinsic dimensionality of eigenspace across subjects, we used a Procrustes validation that characterizes inter-subject variability. We found that the ODF approach using 3-neighborhood captures the most information from the diffusion-weighted MRI. The proposed methods open a wide range of possibilities for new research avenues, especially in the field of graph signal processing applied to functional brain imaging.
Dimitri Nestor Alice Van De Ville, Elvira Pirondini, Cyprien Alban Félicien Rivier
Friedhelm Christoph Hummel, Takuya Morishita, Manon Chloé Durand-Ruel, Chang-Hyun Park, Maeva Moyne
João Pedro Forjaco Jorge, Patricia Figueiredo