Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Interaction techniqueAn interaction technique, user interface technique or input technique is a combination of hardware and software elements that provides a way for computer users to accomplish a single task. For example, one can go back to the previously visited page on a Web browser by either clicking a button, pressing a key, performing a mouse gesture or uttering a speech command. It is a widely used term in human-computer interaction. In particular, the term "new interaction technique" is frequently used to introduce a novel user interface design idea.
Linear elasticityLinear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding.
Module d'élasticitéUn module d'élasticité (ou module élastique ou module de conservation) est une grandeur intrinsèque d'un matériau, définie par le rapport d'une contrainte à la déformation élastique provoquée par cette contrainte. Les déformations étant sans dimension, les modules d'élasticité sont homogènes à une pression et leur unité SI est donc le pascal ; en pratique on utilise plutôt un multiple, le ou le . Le comportement élastique d'un matériau homogène isotrope et linéaire est caractérisé par deux modules (ou constantes) d'élasticité indépendants.
Acquisition du langageL'acquisition du langage est un domaine de recherche pluridisciplinaire, relevant notamment de la recherche en psychologie et en sciences du langage, qui vise à décrire et comprendre comment l'enfant acquiert le langage, oral ou gestuel, du milieu qui l'entoure. L'acquisition du langage d'un jeune enfant est rapide et s'effectue sans apprentissage formel. Le langage se développe toute la vie, mais c'est surtout entre la naissance et l'âge de cinq ans, que les apprentissages essentiels sont observés.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Recherche automatique d'architecture neuronaleLa recherche automatique d'architecture neuronale (Neural Architecture Search, NAS) est un ensemble de techniques visant à découvrir automatiquement de nouveaux modèles de réseaux de neurones artificiels. Les principales méthodes employées dans la littérature sont basées soit sur de l'apprentissage par renforcement, sur de la descente de gradient ou bien sur des algorithmes génétiques. Plusieurs méthodes NAS parviennent à obtenir des architectures qui atteignent ou surpassent les performances des modèles créés à la main.