Publication

RADX: A novel single-stranded DNA-binding protein regulating telomere recombination

Anna-Sophia Briod
2019
Thèse EPFL
Résumé

Telomeres are specialized nucleoprotein structures present at the ends of linear chromosome. The telomeric DNA part is comprised of 5-15 kilo base pairs of double stranded TTAGGG repeats and it contains at the 3' end a single-stranded G-rich overhang of 50-400 nucleotides. Telomeric DNA associates with a large number of proteins, which inhibit DNA damage checkpoint activation, DNA repair activities and nucleolytic degradation. To better understand the complex roles which telomeres play in genome stability, premature aging and cancer development we explored the telomeric proteomic environment with BioID. We employed a CRISPR/Cas9 based knock-in approach to integrate the promiscuous biotin ligase BirA at the genomic loci of the telomeric components TRF1, TRF2 and POT1. Thus, we expressed the fusion proteins from native promoters aiming at retaining native expression levels. Upon incubation with Biotin, the promiscuous biotinylase can label proximal proteins, which can be selectively purified and identified via mass spectrometry. Our BioID results indicated that TRF1, TRF2 and POT1 share a large number of common protein partners. In addition to already known telomere components, we identified a significant number of novel telomeric proteins. Among those newly identified proteins, we found RADX, an RPA-like single-stranded DNA-binding-protein, which counteracts RAD51 at stalled replication forks. Even though RADX had so far only been characterized for its role in DNA replication we observed colocalization of ectopically expressed 3xFlag-RADX with telomeres throughout the cell cycle. The colocalization decreased when the RADXs single-stranded (ss)DNA-binding domain was mutated. We therefore hypothesize that RADX binds the single-stranded G-rich telomeric strand either as displaced strand in the t-loop or as single-stranded telomeric overhang. Chromatin-immunoprecipitation experiments suggest that RADX plays a distinct role in telomere replication, since upon treatment with the replication stress inducing reagent hydroxyurea we observed increased binding of RADX specifically to telomeres. Notably, RADX depletion on its own did not alter telomere integrity and telomere length but upon co-depletion with POT1, telomere fragility, sister-chromatid associations and telomere length increased strikingly. POT1 and POT1/RADX depletions lead to increased associations of the recombinase RAD51 with telomeres and consequently silencing of RAD51 rescued telomere integrity and elongation implying the regulatory role of RADX for RAD51. In summary my thesis describes the proteomic microenvironment of different telomeric proteins, identifies the novel telomeric protein RADX and characterizes its role at telomeres. My findings provide important insights into how homologous recombination and RAD51 loading is suppressed at telomeres.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (36)
Télomère
Un télomère est une région hautement répétitive, donc a priori non codante, d'ADN à l'extrémité d'un chromosome. À chaque fois qu'un chromosome en bâtonnet d'un eucaryote est répliqué, lors de la réplication, qui précède la mitose (division cellulaire), le complexe enzymatique de l'ADN polymérase s'avère incapable de copier les derniers nucléotides : l'absence de télomère signifierait la perte rapide d'informations génétiques nécessaires au fonctionnement cellulaire.
Recombinaison homologue
thumb | 275px | alt=Schéma du chromosome 1 après recombinaison homologue | Figure 1. La recombinaison homologue peut produire de nouvelles combinaisons d'allèles entre les chromosomes parentaux, notamment lors de la méiose.La recombinaison homologue est un type de recombinaison génétique où les séquences de nucléotides sont échangées entre des molécules d'ADN identiques (homologues) ou similaires (Figure 1). Au sens large, la recombinaison homologue est un mécanisme ubiquitaire de réparation des cassures double-brins de l'ADN.
Réplication de l'ADN
redresse=1.2|vignette La réplication de l'ADN, aussi appelée duplication de l'ADN ou synthèse de l'ADN, est le processus au cours duquel l'ADN est synthétisé. Ce mécanisme permet d'obtenir, à partir d'une molécule d'ADN, deux molécules identiques à la molécule initiale. L'ADN dupliqué sera par la suite divisé entre les deux cellules filles lors de la division cellulaire (mitose et méiose). Cela permet de maintenir l'information génétique et de produire deux cellules filles avec un matériel génétique identique.
Afficher plus
Publications associées (88)

A chemical biology approach to decipher chromatin ubiquitylation by RNF168

Pauline Franz

DNA damage signaling following DNA double-strand breaks (DSBs) involves numerous regulating proteins, which dynamically recognize ('read') and alter ('write' or 'erase') histone post-translational modifications (PTMs). Among these PTMs, the ubiquitin syste ...
EPFL2024

Regulation and impact of TERRA R-loops at human telomeres

Rita Valador Fernandes

Telomeres are the nucleoprotein structures found at the ends of linear chromosomes. They ensure that the termini of chromosomes are not inappropriately recognized as sites of DNA damage, and are therefore crucial for genome stability. In spite of the heter ...
EPFL2023

Telomere protection against oxidative stress

Thu Trang Nguyen

Telomeres are nucleoprotein structures at the ends of linear chromosomes, being essential for the maintenance of genomic integrity. Telomeres have a unique structure which distinguishes chromosome termini from DNA damage sites. Shelterin complexes are the ...
EPFL2023
Afficher plus
MOOCs associés (6)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Afficher plus