Thermal Engineering of Metal-Organic Frameworks for Adsorption Applications: A Molecular Simulation Perspective
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Crystals and glasses exhibit fundamentally different heat conduction mechanisms: the periodicity of crystals allows for the excitation of propagating vibrational waves that carry heat, as first discussed by Peierls, while in glasses the lack of periodicity ...
The combination of multi-stage heat pump cycles with small-scale oil-free turbocompressor technology running on gas bearings could be a promising way to increase performance in domestic and commercial heat pumps. This paper presents a novel two-stage heat ...
An important part of the electricity production relies on heat conversion. Indeed power plants burn fuels like natural gas, coal or use nuclear fission to produce heat that can be transformed into electricity through a thermodynamic cycle and the mechanica ...
Anthropogenic heat emissions into inland waters influence water temperature and affect stratification, heat and nutrient fluxes, deep water renewal, and biota. Given the increased thermal stress on these systems by growing cooling demands of riparian/coast ...
Metal–organic frameworks show both fundamental interest and great promise for applications in adsorption-based technologies, such as the separation and storage of gases. The flexibility and complexity of the molecular scaffold pose a considerable challenge ...
Two-phase, refrigerant-based cooling offers significant promise for increasing heat densities and energy efficiencies of electronic components. One barrier to wide spread adoption of two-phase cooling solutions is preserving product features deemed essenti ...
The global tendency towards miniaturization driven by the microelectronics industry is pushing system density and packaging towards unprecedented values of thermal design power, with a dramatic reduction of the surface area of the devices. Vertical integra ...
Lattice vibrations are the microscopic mechanism responsible for a large, if not dominant, contribution to heat transport in crystalline insulators. These vibrations are described in terms of phonons, collective excitations (or quasiparticles) in the form ...
Thermal conductivity in dielectric crystals is the result of the relaxation of lattice vibrations described by the phonon Boltzmann transport equation. Remarkably, an exact microscopic definition of the heat carriers and their relaxation times is still mis ...
Xenon is known to be a very efficient anesthetic gas, but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycling from anesthetic gas mixtures can significantly reduce its cost ...