Publication

On The Behavior Of Clamped Plates Under Large Compression

2019
Article
Résumé

We determine the asymptotic behavior of eigenvalues of clamped plates under large compression by relating this problem to eigenvalues of the Laplacian with Robin boundary conditions. Using the method of fundamental solutions, we then carry out a numerical study of the extremal domains for the first eigenvalue, from which we see that these depend on the value of the compression, and start developing a boundary structure as this parameter is increased. The corresponding number of nodal domains of the first eigenfunction of the extremal domain also increases with the compression.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (35)
Compression de données
La compression de données ou codage de source est l'opération informatique consistant à transformer une suite de bits A en une suite de bits B plus courte pouvant restituer les mêmes informations, ou des informations voisines, en utilisant un algorithme de décompression. C'est une opération de codage qui raccourcit la taille (de transmission, de stockage) des données au prix d'un travail de compression. Celle-ci est l'opération inverse de la décompression.
Algorithme de compression sans perte
vignette|Comparaison de la compression d'image entre les formats JPG (à gauche) et PNG (à droite). PNG utilise une compression sans perte. On appelle algorithme de compression sans perte toute procédure de codage ayant pour objectif de représenter une certaine quantité d'information en utilisant ou en occupant un espace plus petit, permettant ainsi une reconstruction exacte des données d'origine. C'est-à-dire que la compression sans perte englobe les techniques permettant de générer un duplicata exact du flux de données d'entrée après un cycle de compression/expansion.
Compression artifact
A compression artifact (or artefact) is a noticeable distortion of media (including , audio, and video) caused by the application of lossy compression. Lossy data compression involves discarding some of the media's data so that it becomes small enough to be stored within the desired or transmitted (streamed) within the available bandwidth (known as the data rate or bit rate). If the compressor cannot store enough data in the compressed version, the result is a loss of quality, or introduction of artifacts.
Afficher plus
Publications associées (56)

PROBING INTRACELLULAR ELASTICITY WITH MINIMAL-HESSIAN REGISTRATION

Michaël Unser

We propose an image-based elastography method to measure the heterogeneous stiffness inside a cell and its nucleus. It uses a widely accessible setup consisting of plate compression imaged with fluorescence microscopy. Our framework recovers a spatial map ...
New York2023

Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictions

Véronique Michaud, Baris Çaglar, Guillaume Clément Broggi

Permeability measurements of engineering textiles exhibit large variability as no standardization method currently exists; numerical permeability prediction is thus an attractive alternative. It has all advantages of virtual material characterization, incl ...
2023

The first Grushin eigenvalue on cartesian product domains

Joachim Stubbe, Luigi Provenzano, Paolo Luzzini

In this paper, we consider the first eigenvalue.1(O) of the Grushin operator.G :=.x1 + |x1|2s.x2 with Dirichlet boundary conditions on a bounded domain O of Rd = R d1+ d2. We prove that.1(O) admits a unique minimizer in the class of domains with prescribed ...
WALTER DE GRUYTER GMBH2023
Afficher plus
MOOCs associés (20)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Afficher plus