Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this study, we compared a monocular computer vision (MCV)-based approach with the golden standard for collecting kinematic data on ski tracks (i.e., video-based stereophotogrammetry) and assessed its deployment readiness for answering applied research questions in the context of alpine skiing. The investigated MCV-based approach predicted the three-dimensional human pose and ski orientation based on the image data from a single camera. The data set used for training and testing the underlying deep nets originated from a field experiment with six competitive alpine skiers. The normalized mean per joint position error of the MVC-based approach was found to be 0.08 +/- 0.01 m. Knee flexion showed an accuracy and precision (in parenthesis) of 0.4 +/- 7.1 degrees (7.2 +/- 1.5 degrees) for the outside leg, and -0.2 +/- 5.0 degrees (6.7 +/- 1.1 degrees) for the inside leg. For hip flexion, the corresponding values were -0.4 +/- 6.1 degrees (4.4 degrees +/- 1.5 degrees) and -0.7 +/- 4.7 degrees (3.7 +/- 1.0 degrees), respectively. The accuracy and precision of skiing-related metrics were revealed to be 0.03 +/- 0.01 m (0.01 +/- 0.00 m) for relative center of mass position, -0.1 +/- 3.8 degrees (3.4 +/- 0.9) for lean angle, 0.01 +/- 0.03 m (0.02 +/- 0.01 m) for center of mass to outside ankle distance, 0.01 +/- 0.05 m (0.03 +/- 0.01 m) for fore/aft position, and 0.00 +/- 0.01 m(2) (0.01 +/- 0.00 m(2)) for drag area. Such magnitudes can be considered acceptable for detecting relevant differences in the context of alpine skiing.
Mohamed Farhat, Davide Bernardo Preso, Armand Baptiste Sieber
, , , , , , ,