Publication

Byzantine tolerant gradient descent for distributed machine learning with adversaries

Résumé

The present application concerns a computer-implemented method for training a machine learning model in a distributed fashion, using Stochastic Gradient Descent, SGD, wherein the method is performed by a first computer in a distributed computing environment and comprises performing a learning round, comprising broadcasting a parameter vector to a plurality of worker computers in the distributed computing environment, receiving an estimate update vector (gradient) from all or a subset of the worker computers, wherein each received estimate vector is either an estimate of a gradient of a cost function, or an erroneous vector, and determining an updated parameter vector for use in a next learning round based only on a subset of the received estimate vectors. The method aggregates the gradients while guaranteeing resilience to up to half workers being compromised (malfunctioning, erroneous or modified by attackers).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.