Multi-Scale Electrolyte Transport Simulations for Lithium Ion Batteries
Publications associées (47)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The current restrictions on the registration of combustion engines in different countries and the harmful impacts of fossil fuels on the environment and human health have motivated decision-makers to use batteries and/or fuel cells as alternatives for comb ...
The recent targets by different countries to stop the sales or registrations of internal combustion engines (ICE) have led to the further development of battery and fuel cell technologies to provide power for different applications. The main aim of this st ...
Sodium-nickel-chloride batteries have a proven track record for backup power applications, but also show great potential for large-scale stationary electricity storage currently dominated by lithium-ion batteries. While lithium-ion cells rely on critical c ...
Lithium-ion batteries with enhanced rate performance are of crucial importance for practical applications. Extensive studies on the structural design and surface modification of electrode materials with the aim of improving the rate performance have been r ...
Poor cycling stability and low volumetric capacity of sulfur cathode prevents practical application of Lithium-sulfur (Li-S) batteries. Herein, we demonstrate a strategy to address the two drawbacks of sulfur cathode by synthesizing a compact and flexible ...
Electric vehicles (EVs) have gained widespread attention in recent years as the dominant strategy for curbing CO2 emissions through transport electrification. Lithium-ion batteries (LIBs) are currently the most suitable and almost exclusively employed ener ...
The solid electrolyte interphase (SEI) is a key component of a lithium-ion battery forming during the first few dischage/charge cycles at the interface between the anode and the electrolyte. The SEI passivates the anode-electrolyte interface by inhibiting ...
Fluorination of solvents, useful for non-aqueous lithium-based batteries, improves the electrochemical stability but decreases the ionic conductivity. Here, the authors report a targeted functionalization of an ether solvent to balance the electrolyte ioni ...
Li-rich oxide cathodes are drawing increasing attention as next-generation cathode materials for the development of high-energy-density Li-ion batteries due to their strikingly high capacities. However, transition-metal migration, irreversible structural p ...
The intrinsic stability of the 5 V LiCoPO4-LiCo2P3O10 thin-film (carbon-free) cathode material coated with MoO3 thin layer is studied using a comprehensive synchrotron electron spectroscopy in situ approach combined with firstprinciple calculations. The at ...