One-shot learning and behavioral eligibility traces in sequential decision making
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Reinforcement learning (RL) is crucial for learning to adapt to new environments. In RL, the prediction error is an important component that compares the expected and actual rewards. Dopamine plays a critical role in encoding these prediction errors. In my ...
Human babies have a natural desire to interact with new toys and objects, through which they learn how the world around them works, e.g., that glass shatters when dropped, but a rubber ball does not. When their predictions are proven incorrect, such as whe ...
In practice, most operational activity-based models have focused on single-day analyses. This common simplifying assumption significantly limits the models' behavioural realism, as they cannot adequately capture the dynamics and processes involved in the s ...
Decision-making permeates every aspect of human and societal development, from individuals' daily choices to the complex decisions made by communities and institutions. Central to effective decision-making is the discipline of optimization, which seeks the ...
We consider optimal regimes for algorithm-assisted human decision-making. Such regimes are decision functions of measured pre-treatment variables and, by leveraging natural treatment values, enjoy a superoptimality property whereby they are guaranteed to o ...
Modern computing has enhanced our understanding of how social interactions shape collective behaviour in animal societies. Although analytical models dominate in studying collective behaviour, this study introduces a deep learning model to assess social in ...
In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...
As a universal expression of human creativity, music is capable of conveying great subtlety and complexity. Crucially, this complexity is not encoded in the score or in the sounds, but is rather construed in the mind of the listener in the form of nuanced ...
A range of behavioral and contextual factors, including eating and drinking behavior, mood, social context, and other daily activities, can significantly impact an individual's quality of life and overall well-being. Therefore, inferring everyday life aspe ...
Monitoring forests, in particular their response to climate and land use change, requires studying long time scales. While efficient deep learning methods have been developed to process short time series of satellite imagery, leveraging long time series of ...