PesanteurLe champ de pesanteur est le champ attractif qui s'exerce sur tout corps doté d'une masse sur la Terre (ou un autre astre). Il s'agit d'un champ d'accélération, souvent appelé plus simplement pesanteur ou « g ». L'essentiel de la pesanteur terrestre est due à la gravité, mais s'en distingue du fait de l'accélération axifuge induite par la rotation de la Terre sur elle-même. La gravité terrestre découle de la loi universelle de la gravitation de Newton, selon laquelle tous les corps massifs, dont les corps célestes et la Terre, exercent un champ de gravitation responsable d'une force attractive sur les autres corps massiques.
Mécanique newtonienneLa mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
Pendule sphériqueOn appelle pendule sphérique un dispositif formé d'une tige de masse nulle de longueur accrochée à un point fixe et à laquelle est fixée à l'autre extrémité une masse , habilité à se mouvoir en 3 dimensions, et placé dans un champ de pesanteur uniforme. En bref, c'est un pendule simple en 3D. Mais le problème peut aussi être considéré comme un cas particulier de mouvement d'un point matériel astreint à glisser sans frottement sur une surface, en l'occurrence la sphère de centre et de rayon .
Finite potential wellThe finite potential well (also known as the finite square well) is a concept from quantum mechanics. It is an extension of the infinite potential well, in which a particle is confined to a "box", but one which has finite potential "walls". Unlike the infinite potential well, there is a probability associated with the particle being found outside the box. The quantum mechanical interpretation is unlike the classical interpretation, where if the total energy of the particle is less than the potential energy barrier of the walls it cannot be found outside the box.
Field equationIn theoretical physics and applied mathematics, a field equation is a partial differential equation which determines the dynamics of a physical field, specifically the time evolution and spatial distribution of the field. The solutions to the equation are mathematical functions which correspond directly to the field, as functions of time and space. Since the field equation is a partial differential equation, there are families of solutions which represent a variety of physical possibilities.
Solution of Schrödinger equation for a step potentialIn quantum mechanics and scattering theory, the one-dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves. The problem consists of solving the time-independent Schrödinger equation for a particle with a step-like potential in one dimension. Typically, the potential is modeled as a Heaviside step function. The time-independent Schrödinger equation for the wave function is where Ĥ is the Hamiltonian, ħ is the reduced Planck constant, m is the mass, E the energy of the particle.