Désintégration du protonEn physique des particules, la désintégration du proton désigne un mode hypothétique de décroissance radioactive dans laquelle le proton se désintègre en des particules subatomiques plus légères, comme le pion neutre et le positron. Il n'existe actuellement aucune preuve expérimentale indiquant que la désintégration du proton se produise ; ce qui place la demi-vie théorique du proton à une valeur supérieure à 10 années. Dans le modèle standard, les protons (un type de baryon), sont théoriquement stables parce que le nombre baryonique est censé se conserver.
Strangeness and quark–gluon plasmaIn high-energy nuclear physics, strangeness production in relativistic heavy-ion collisions is a signature and diagnostic tool of quark–gluon plasma (QGP) formation and properties. Unlike up and down quarks, from which everyday matter is made, heavier quark flavors such as strange and charm typically approach chemical equilibrium in a dynamic evolution process. QGP (also known as quark matter) is an interacting localized assembly of quarks and gluons at thermal (kinetic) and not necessarily chemical (abundance) equilibrium.
Quark modelIn particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that were being discovered starting in the 1950s and continuing through the 1960s. It received experimental verification beginning in the late 1960s and is a valid effective classification of them to date.
Radioactivitévignette|Pictogramme signalant la présence de matière radioactive. (☢) vignette|La maison de Georges Cuvier, au Jardin des plantes de Paris, où Henri Becquerel découvrit la radioactivité en 1896. La radioactivité est le phénomène physique par lequel des noyaux atomiques instables (dits radionucléides ou radioisotopes) se transforment spontanément en d'autres atomes (désintégration) en émettant simultanément des particules de matière (électrons, noyaux d'hélium, neutrons) et de l'énergie (photons et énergie cinétique).
Baryon OmégaEn physique des particules, un baryon oméga, noté par la lettre , est un baryon qui ne contient aucun quark down ou quark up. Le premier baryon oméga à avoir été découvert est le baryon Ω−, composé de trois quarks strange. Sa découverte fut une grande avancée dans l'étude des quarks, dans la mesure où son existence, sa masse et ses produits de désintégration avaient été correctement prédits par la théorie auparavant. La désintégration du baryon oméga se fait par le biais de l'interaction faible, ce qui lui confère une relativement longue durée de vie.
Quark étrangeLe quark étrange (souvent appelé quark strange en empruntant la terminologie anglophone, et également nommé quark s) est un quark, une particule élémentaire du modèle standard de la physique des particules. L’UIPPA définit le symbole s comme son nom officiel, désignant strange comme une appellation d’intérêt mnémotechnique. Avec le quark charm, il fait partie des quarks de deuxième génération. Comme tous les quarks de charge négative, sa charge électrique est de −1/3 e (celle des quarks électropositifs est de +2/3 e).
PositonEn physique des particules, le positon ou positron (anglicisme), encore appelé antiélectron par convention, est l'antiparticule associée à l'électron. Trouvée au , elle est la première antiparticule découverte. Le positon possède une charge électrique de +1 charge élémentaire (contre pour l'électron), le même spin et la même masse que l'électron. Il est noté ou ou . La théorisation de cette particule fut provoquée par l'écriture par Paul Dirac, en 1928, d'une équation relativiste décrivant l'électron.
Chaîne de désintégrationvignette|Différents modes de désintégration radioactive : radioactivités α, β et β, capture électronique (ε), émission de neutron (n) et émission de proton (p). N et Z sont le nombre de neutrons et le nombre de protons des noyaux considérés. Une chaîne de désintégration, ou chaîne radioactive, ou série radioactive, ou désintégration en cascade, ou encore filiation radioactive, est une succession de désintégrations d'un radioisotope jusqu'à un élément chimique dont le noyau atomique est stable (par conséquent non radioactif), généralement le plomb (Pb), élément le plus lourd possédant des isotopes stables.
ProtonLe proton est une particule subatomique portant une charge électrique élémentaire positive. Les protons sont présents dans les noyaux atomiques, généralement liés à des neutrons par l'interaction forte (la seule exception, mais celle du nucléide le plus abondant de l'univers, est le noyau d'hydrogène ordinaire (protiumH), un simple proton). Le nombre de protons d'un noyau est représenté par son numéro atomique Z. Le proton n'est pas une particule élémentaire mais une particule composite.
Radioactivité αLa radioactivité alpha (ou rayonnement alpha, symbolisé α) est le rayonnement provoqué par la désintégration alpha, soit la forme de désintégration radioactive où un noyau atomique X éjecte une et se transforme en un noyau Y de nombre de masse A diminué de 4 et de numéro atomique Z diminué de 2. En 1898, Ernest Rutherford découvre que la radioactivité émise par un minerai d'uranium est un mélange de deux phénomènes distincts qu'il appelle radioactivité α et radioactivité β.