Intervalle de confiancevignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.
Théorie de Fermi de la désintégration βthumb|360px|La décroissance β− dans un noyau atomique (l'antineutrino associé est omis).En bas à droite est représentée la décroissance bêta du neutron libre.Dans les deux processus, l'émission intermédiaire d'un boson virtuel W- (qui décroit ensuite en un électron et un antineutrino) n'est pas montrée. En physique des particules, l'interaction de Fermi (aussi connue comme la théorie de Fermi de la désintégration β) est une explication de la radioactivité β, proposée par Enrico Fermi en 1933.
Désintégration du protonEn physique des particules, la désintégration du proton désigne un mode hypothétique de décroissance radioactive dans laquelle le proton se désintègre en des particules subatomiques plus légères, comme le pion neutre et le positron. Il n'existe actuellement aucune preuve expérimentale indiquant que la désintégration du proton se produise ; ce qui place la demi-vie théorique du proton à une valeur supérieure à 10 années. Dans le modèle standard, les protons (un type de baryon), sont théoriquement stables parce que le nombre baryonique est censé se conserver.
Particule de MajoranaEn physique des particules, une particule de Majorana ou fermion de Majorana est un fermion qui est sa propre antiparticule. Ces particules sont nommées en hommage au physicien Ettore Majorana, qui a proposé ce modèle en établissant l'équation qui porte son nom. Ce terme est parfois utilisé en opposition aux particules de Dirac (ou fermions de Dirac) qui ont une antiparticule différente d'elles-mêmes. En 1928, Paul Dirac publie l'article qui contient l'équation de Dirac.
Physique au-delà du modèle standardLa physique au-delà du modèle standard se rapporte aux développements théoriques de la physique des particules nécessaires pour expliquer les défaillances du modèle standard, telles que l'origine de la masse, le problème de la violation CP de l'interaction forte, les oscillations des neutrinos, l'asymétrie matière-antimatière, et la nature de la matière noire et de l'énergie noire.
Confidence distributionIn statistical inference, the concept of a confidence distribution (CD) has often been loosely referred to as a distribution function on the parameter space that can represent confidence intervals of all levels for a parameter of interest. Historically, it has typically been constructed by inverting the upper limits of lower sided confidence intervals of all levels, and it was also commonly associated with a fiducial interpretation (fiducial distribution), although it is a purely frequentist concept.
Interaction élémentaireQuatre interactions élémentaires sont responsables de tous les phénomènes physiques observés dans l'Univers, chacune se manifestant par une force dite force fondamentale. Ce sont l'interaction nucléaire forte, l'interaction électromagnétique, l'interaction faible et l'interaction gravitationnelle. En physique classique, les lois de la gravitation et de l'électromagnétisme étaient considérées comme axiomes.
ATLAS (détecteur)thumb|Le détecteur ATLAS vers la fin février 2006 ATLAS (acronyme de A Toroidal LHC ApparatuS : - dispositif instrumental toroïdal pour le LHC - qui utilise un électro-aimant toroïdal où le champ magnétique se referme sur lui-même dans l'air, sans l'aide d'un retour de fer) est l'une des du collisionneur LHC au CERN. Il s'agit d'un détecteur de particules semblable à CMS, mais de plus grande taille et de conception différente. Il a pour tâche de détecter le boson de Higgs, des particules supersymétriques (SUSY).
Boson de Higgsthumb|De gauche à droite : Kibble, Guralnik, Hagen, Englert et Brout, en 2010. Le boson de Higgs ou boson BEH, est une particule élémentaire dont l'existence, postulée indépendamment en juin 1964 par François Englert et Robert Brout, par Peter Higgs, en août, et par Gerald Guralnik, Carl Richard Hagen et Thomas Kibble, permet d'expliquer la brisure de l'interaction unifiée électrofaible (EWSB, pour l'anglais ) en deux interactions par l'intermédiaire du mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble et d'expliquer ainsi pourquoi certaines particules ont une masse et d'autres n'en ont pas.
Création de pairesUne création de paires est la création d’un couple particule-antiparticule à partir d’un photon (ou d’un autre boson de charge neutre) ou d’une particule chargée se déplaçant à une vitesse relativiste. La production fait référence à la création d’une particule élémentaire et de son antiparticule, le plus souvent à partir d’un photon (ou un autre boson neutre). Cela est permis dès lors qu’il y a suffisamment d’énergie disponible dans le centre de masse pour créer la paire — au moins l’énergie de masse au repos totale des deux particules — et que la situation permet la conservation de l’énergie et de la quantité de mouvement.